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To the memory of my late friend, Austin Tribble, for exemplifying resilience and determination. To my 
wife, Jill Rodriguez, whose brilliance and intellectual curiosity have inspired me every day since the 

day we met.

– Carlos Rodriguez



Foreword

Large Language Models (LLMs) are poised to transform the way we interact with technology, offering 
unprecedented capabilities in understanding and generating human language. They have become essential 
tools in numerous applications, from chatbots and virtual assistants to content creation and translation 
services. For a subject that is extremely dynamic and complex, Carlos has managed to distill years of 
expertise into a work that is both accessible and comprehensive. This book not only demystifies the 
complexities of LLMs but also provides a comprehensive guide for practitioners and enthusiasts alike.  
So, it is with great pride and excitement that I pen this foreword for my good friend and esteemed 
colleague, Carlos Rodriguez, whose work on LLMs delves into the intricacies of model architecture, 
training methodologies, and practical implementations, all while maintaining a clarity that ensures readers, 
regardless of their background, can grasp the fundamental principles and potential applications of LLMs.  
Our journey together began only two short years ago; however, we found ourselves to be kindred 
spirits in the ever-evolving world of AI. From the outset, I was struck by Carlos’ insatiable curiosity 
and unyielding dedication to the field of AI. Over numerous discussions and collaborative projects, 
I have witnessed firsthand the depth of his knowledge, the rigor of his research, and the passion that 
fuels his relentless pursuit of innovation. What sets Generative AI Foundations in Python apart is 
Carlos’ unique ability to blend technical depth with practical insights. Each chapter is a testament to his 
meticulous approach and his commitment to bridging the gap between theoretical concepts and real-
world solutions. Interweaving real-world examples, code snippets, and practical considerations ensures 
that seasoned professionals or newcomers to the field will find this book to be an invaluable resource. 
In closing, I invite you to embark on this journey with an open mind and a passion for learning. 
The landscape of LLMs is vast; there is no better guide than the one you hold in your hands. 
May this book inspire, educate, and ignite a passion for learning and discovery in every reader. 
Enjoy the journey.

– Samira Shaikh, PhD.

VP of Data Science, Artificial Intelligence, and Advanced Analytics, Popular Bank Associate Professor 
of Computer Science, UNC Charlotte
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Preface

Welcome to Generative AI Foundations in Python: Discover key techniques and navigate modern 
challenges in LLMs. This book offers an accessible introduction to generative AI and large language 
models (LLMs), guiding the reader from core principles to practical applications. It aims to present a 
balanced approach, offering theory and hands-on examples, providing a strong foundation for those 
seeking to understand and leverage generative AI in their respective disciplines and fields.

Who this book is for
Written for data scientists, machine learning engineers, IT professionals, educators, and students with a 
basic grasp of machine learning and Python, the book meets the readers where they are, enabling them 
to engage fully with the content and build their foundational knowledge of generative AI concepts.

What this book covers
Chapter 1, Understanding Generative AI: An Introduction, lays the conceptual groundwork, broadening 
the reader’s fundamental understanding of what this technology does, how it was derived, and how it 
can be used. It establishes how generative models differ from classical machine learning paradigms and 
elucidates how they discern complex relationships and idiosyncrasies in data to synthesize human-
like text, audio, and video.

Chapter 2, Surveying GenAI Types and Modes: An Overview of GANs, Diffusers, and Transformers, 
explores the theoretical foundations and real-world applications of these techniques in greater depth. 
It dissects the architectural innovations and enhancements that improved training stability and output 
quality over time, bringing us to state-of-the-art LLMs.

Chapter 3, Tracing the Foundations of Natural Language Processing and the Impact of the Transformer, 
covers the evolution of natural language processing (NLP) that ultimately led to the advent of the 
Transformer architecture. It introduces the Transformer—its basis in deep learning, its self-attention 
architecture, and its rapid evolution, which has led to the generative AI phenomenon.

Chapter 4, Applying Pretrained Generative Models: From Prototype to Production, outlines the process 
of transitioning a generative AI prototype to a production-ready deployment. It walks through 
setting up a robust Python environment using Docker, GitHub, and CI/CD pipelines, then presents 
considerations for selecting and deploying a suitable pre-trained model for the project at hand, 
emphasizing computational considerations, proper evaluation, monitoring, and responsible AI practices.
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Chapter 5, Fine-Tuning Generative Models for Specific Tasks, examines how Parameter-Efficient 
Fine-Tuning (PEFT) facilitates approachable continued training for specific tasks such as question-
answering. It explores and defines a range of scalable fine-tuning techniques, comparing them with 
other approaches such as in-context learning.

Chapter 6, Understanding Domain Adaptation for Large Language Models, introduces domain adaptation, 
a unique fine-tuning approach that equips models to interpret language unique to specific industries 
or domains, addressing the gap in LLMs’ understanding of specialized language.

Chapter 7, Mastering the Fundamentals of Prompt Engineering, explores prompting techniques to examine 
how to adapt a general-purpose LLM without fine-tuning. It explores various prompting strategies 
that leverage the model’s inherent capabilities to produce targeted and contextually relevant outputs. It 
explores a simple approach to RAG and provides techniques to understand and measure performance.

Chapter 8, Addressing Ethical Considerations and Charting a Path Toward Trustworthy Generative 
AI, recognizes the increasing prominence of generative AI and explores the ethical considerations 
that should guide its progress. It outlines key concepts such as transparency, fairness, accountability, 
respect for privacy, informed consent, security, and inclusivity, which are essential for the responsible 
development and use of these technologies.

To get the most out of this book
Readers should have a foundational understanding of Python programming and a basic grasp of machine 
learning concepts. Familiarity with deep learning frameworks such as TensorFlow or PyTorch will be 
beneficial but not essential. The book assumes an intermediate level of Python proficiency, enabling 
readers to focus on the generative AI concepts and applications covered throughout the chapters.

Software/hardware covered in the book Operating system requirements
Python 3 GPU-enabled Windows, macOS, or Linux

The book’s coding examples are designed to be compatible with Python 3 and run on Windows, 
macOS, or Linux operating systems. To fully engage with the hands-on tutorials and examples, 
access to a GPU is recommended, as many generative AI models are computationally intensive. The 
book provides guidance on setting up a suitable development environment, including instructions 
for installing necessary libraries and dependencies.

If you are using the digital version of this book, we advise you to type the code yourself or access 
the code from the book’s GitHub repository (a link is available in the next section). Doing so will 
help you avoid any potential errors related to the copying and pasting of code.
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Throughout the book, readers are encouraged to actively experiment with the code samples provided 
and adapt them to their own projects. The companion GitHub repository serves as a valuable resource, 
offering more complete and modular versions of the code examples presented in the chapters. Accessing 
and working with this code will enhance the reader’s learning experience and help solidify their 
understanding of the concepts covered.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Generative-AI-Foundations-in-Python. Any code updates will be 
provided in the GitHub repository. Please feel free to open issues on this repository should any arise.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file 
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “Each entry 
in the dataset needs to be tokenized and structured with the necessary fields such as input_ids 
and attention_mask.”

A block of code is set as follows:

# Get the start and end positions
answer_start_scores = outputs.start_logits
answer_end_scores = outputs.end_logits

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words 
in menus or dialog boxes appear in bold. Here is an example: “Click the + icon in the top-right corner 
of the GitHub home page and select New repository.”

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

https://github.com/PacktPublishing/Generative-AI-Foundations-in-Python
https://github.com/PacktPublishing/Generative-AI-Foundations-in-Python
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
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Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. 
If you have found a mistake in this book, we would be grateful if you would report this to us. Please 
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would 
be grateful if you would provide us with the location address or website name. Please contact us at 
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you 
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Share Your Thoughts
Once you’ve read Generative AI Foundations in Python, we’d love to hear your thoughts! Please 
click here to go straight to the Amazon review page for this book and share 
your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering 
excellent quality content.

http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
https://www.packtpub.com/
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This part provides an overview of generative AI and the role of large language models. It covers 
the basics of generative AI, different types of generative models, including GANs, diffusers, and 
transformers, and the foundational aspects of natural language processing. Additionally, it explores 
how pretrained generative models can be applied from prototype to production, setting the stage for 
more advanced topics.

This part contains the following chapters:

•	 Chapter 1, Understanding Generative AI: An Introduction

•	 Chapter 2, Surveying GenAI Types and Modes: An Overview of GANs, Diffusers, and Transformers

•	 Chapter 3, Tracing the Foundations of Natural Language Processing and the Impact  
of the Transformer

•	 Chapter 4, Applying Pretrained Generative Models: From Prototype to Production

Part 1:  
Foundations of Generative 

AI and the Evolution of Large 
Language Models





1
Understanding Generative AI: 

An Introduction

In his influential book The Singularity Is Near (2005), renowned inventor and futurist Ray Kurzweil 
asserted that we were on the precipice of an exponential acceleration in technological advancements. He 
envisioned a future where technological innovation would continue to accelerate, eventually leading to 
a singularity—a point where artificial intelligence (AI) could transcend human intelligence, blurring 
the lines between humans and machines. Fast-forward to today and we find ourselves advancing 
along the trajectory Kurzweil outlined, with generative AI marking a significant stride along this path. 
Today, we are experiencing state-of-the-art generative models can behave as collaborators capable 
of synthetic understanding and generating sophisticated responses that mirror human intelligence.. 
The rapid and exponential growth of generative approaches is propelling Kurzweil’s vision forward, 
fundamentally reshaping how we interact with technology.

In this chapter, we lay the conceptual groundwork for anyone hoping to apply generative AI to their 
work, research, or field of study, broadening a fundamental understanding of what this technology 
does, how it was derived, and how it can be used. It establishes how generative models differ from 
classical machine learning (ML) paradigms and elucidates how they discern complex relationships 
and idiosyncrasies in data to synthesize human-like text, audio, and video. We will explore critical 
foundational generative methods, such as generative adversarial networks (GANs), diffusion models, 
and transformers, with a particular emphasis on their real-world applications.

Additionally, this chapter hopes to dispel some common misunderstandings surrounding generative 
AI and provides guidelines to adopt this emerging technology ethically, considering its environmental 
footprint and advocating for responsible development and adoption. We will also highlight scenarios 
where generative models are apt for addressing business challenges. By the conclusion of this chapter, 
we will better understand the potential of generative AI and its applications across a wide array of 
sectors and have critically assessed the risks, limitations, and long-term considerations.

Whether your interest is casual, you are a professional transitioning from a different field, or you 
are an established practitioner in the fields of data science or ML, this chapter offers a contextual 
understanding to make informed decisions regarding the responsible adoption of generative AI.
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Ultimately, we aim to establish a foundation through an introductory exploration of generative AI 
and large language models (LLMs), dissected into two parts.

The beginning of the book will introduce the fundamentals and history of generative AI, surveying 
various types, such as GANs, diffusers, and transformers, tracing the foundations of natural language 
generation (NLG), and demonstrating the basic steps to implement generative models from prototype 
to production. Moving forward, we will focus on slightly more advanced application fundamentals, 
including fine-tuning generative models, prompt engineering, and addressing ethical considerations 
toward the responsible adoption of generative AI. Let’s get started.

Generative AI
In recent decades, AI has made incredible strides. The origins of the field stem from classical statistical 
models meticulously designed to help us analyze and make sense of data. As we developed more robust 
computational methods to process and store data, the field shifted—intersecting computer science and 
statistics and giving us ML. ML systems could learn complex relationships and surface latent insights 
from vast amounts of data, transforming our approach to statistical modeling.

This shift laid the groundwork for the rise of deep learning, a substantial step forward that introduced 
multi-layered neural networks (i.e., a system of interconnected functions) to model complex patterns. 
Deep learning enabled powerful discriminative models that became pivotal for advancements in diverse 
fields of research, including image recognition, voice recognition, and natural language processing.

However, the journey continues with the emergence of generative AI. Generative AI harnesses the 
power of deep learning to accomplish a broader objective. Instead of classifying and discriminating 
data, generative AI seeks to learn and replicate data distributions to “create” entirely new and seemingly 
original data, mirroring human-like output.

Distinguishing generative AI from other AI models
Again, the critical distinction between discriminative and generative models lies in their objectives. 
Discriminative models aim to predict target outputs given input data. Classification algorithms, such as 
logistic regression or support vector machines, find decision boundaries in data to categorize inputs as 
belonging to one or more class. Neural networks learn input-output mappings by optimizing weights 
through backpropagation (or tracing back to resolve errors) to make accurate predictions. Advanced 
gradient boosting models, such as XGBoost or LightGBM, further enhance these discriminative models 
by employing decision trees and incorporating the principles of gradient boosting (or the strategic 
ensembling of models) to make highly accurate predictions.

Generative methods learn complex relationships through expansive training in order to generate new 
data sequences enabling many downstream applications. Effectively, these models create synthetic 
outputs by replicating the statistical patterns and properties discovered in training data, capturing 
nuances and idiosyncrasies that closely reflect human behaviors.
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In practice, a discriminative image classifier labels images containing a cat or a dog. In contrast, a 
generative model can synthesize diverse, realistic cat or dog images by learning the distributions of 
pixels and implicit features from existing images. Moreover, generative models can be trained across 
modalities to unlock new possibilities in synthesis-focused applications to generate human-like 
photographs, videos, music, and text.

There are several key methods that have formed the foundation for many of the recent advancements 
in Generative AI, each with unique approaches and strengths. In the next section, we survey generative 
advancements over time, including adversarial networks, variational autoencoders, diffusion models, 
and autoregressive transformers, to better understand their impact and inf﻿luence.

Briefly surveying generative approaches

Modern generative modeling encompasses diverse architectures suited to different data types and 
distinct tasks. Here, we briefly introduce some of the key approaches that have emerged over the years, 
bringing us to the state-of-the-art models:

•	 Generative adversarial networks (GANs) involve two interconnected neural networks—one 
acting as a generator to create realistic synthetic data and the other acting as a discriminator that 
distinguishes between real and synthetic (fake) data points. The generator and discriminator 
are adversaries in a zero-sum game, each fighting to outperform the other. This adversarial 
relationship gradually improves the generator’s capacity to produce vividly realistic synthetic 
data, making GANs adept at creating intricate image distributions and achieving photo-realistic 
image synthesis.

•	 Variational autoencoders (VAEs) employ a unique learning method to compress data into a 
simpler form (or latent representation). This process involves an encoder and a decoder that 
work conjointly (Kingma & Welling, 2013). While VAEs may not be the top choice for image 
quality, they are unmatched in efficiently separating and understanding complex data patterns.

•	 Diffusion models continuously add Gaussian noise to data over multiple steps to corrupt it. 
Gaussian noise can be thought of as random variations applied to a signal to distort it, creating 
“noise”. Diffusion models are trained to eliminate the added noise to recover the original data 
distribution. This type of reverse engineering process equips diffusion models to generate 
diverse, high-quality samples that closely replicate the original data distribution, producing 
diverse high-fidelity images (Ho et al., 2020).

•	 Autoregressive transformers leverage parallelizable self-attention to model complex sequential 
dependencies, showing exceptional performance in language-related tasks (Vaswani et al., 
2017). Pretrained models such as GPT-4 or Claude have demonstrated the capability for 
generalizations in natural language tasks and impressive human-like text generation. Despite 
ethical issues and misuse concerns, transformers have emerged as the frontrunners in language 
modeling and multimodal generation.
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Collectively, these methodologies paved the way for advanced generative modeling across a wide 
array of domains, including images, videos, audio, and text. While architectural and engineering 
innovations progress daily, generative methods showcase unparalleled synthesis capabilities across 
diverse modalities. Throughout the book, we will explore and apply generative methods to simulate 
real-world scenarios. However, before diving in, we further distinguish generative methods from 
traditional ML methods by addressing some common misconceptions.

Clarifying misconceptions between discriminative and generative 
paradigms

To better understand the distinctive capabilities and applications of traditional ML models (often 
referred to as discriminative) and generative methods, here, we clear up some common misconceptions 
and myths:

Myth 1: Generative models cannot recognize patterns as effectively as discriminative models.

Truth: State-of-the-art generative models are well-known for their impressive abilities to recognize and 
trace patterns, rivaling some discriminative models. Despite primarily focusing on creative synthesis, 
generative models display classification capabilities. However, the classes output from a generative 
model can be difficult to explain as generative models are not explicitly trained to learn decision 
boundaries or predetermined relationships. Instead, they may only learn to simulate classification based 
on labels learned implicitly (or organically) during training. In short, in cases where the explanation 
of model outcomes is important, classification using a discriminative model may be the better choice.

Example: Consider GPT-4. In addition to synthesizing human-like text, it can understand context, 
capture long-range dependencies, and detect patterns in texts. GPT-4 uses these intrinsic language 
processing capabilities to discriminate between classes, such as traditional classifiers. However, because 
GPT learns semantic relationships through extensive training, explaining its decision-making cannot 
be accomplished using any established methods.

Myth 2: Generative AI will eventually replace discriminative AI.

Truth: This is a common misunderstanding. Discriminative models have consistently been the 
option for high-stakes prediction tasks because they focus directly on learning the decision boundary 
between classes, ensuring high precision and reliability. More importantly, discriminative models can 
be explained post-hoc, making them the ultimate choice for critical applications in sectors such as 
healthcare, finance, and security. However, generative models may increasingly become more popular 
for high-stakes modeling as explainability techniques emerge.

Example: Consider a discriminative model trained specifically for disease prediction in healthcare. A 
specialized model can classify data points (e.g., images of skin) as healthy or unhealthy, giving healthcare 
professionals a tool for early intervention and treatment plans. Post-hoc explanation methods, such as 
SHAP, can be employed to identify and analyze the key features that influence classification outcomes. 
This approach offers clear insights into the specific results (i.e., feature attribution).
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Myth 3: Generative models continuously learn from user input.

Truth: Not exactly. Generative LLMs are trained using a static approach. This means they learn from 
a vast training data corpora, and their knowledge is limited to the information contained within that 
training window. While models can be augmented with additional data or in-context information to 
help them contextualize, giving the impression of real-time learning, the underlying model itself is 
essentially frozen and does not learn in real time.

Example: GPT-3 was trained in 2020 and only contained information up to that date until its successor 
GPT-3.5, released in March of 2023. Naturally, GPT-4 was trained on more recent data, but due to 
training limitations (including diminishing performance returns), it is reasonable to expect that 
subsequent training checkpoints will be released periodically and not continuously.

While generative and discriminative models have distinct strengths and limitations, knowing when 
to apply each paradigm requires evaluating several key factors. As we have clarified some common 
myths about their capabilities, let’s turn our attention to guidelines for selecting the right approach 
for a given task or problem.

Choosing the right paradigm

The choice between generative and discriminative models depends on various factors, such as the 
task or problem at hand, the quality and quantity of data available, the desired output, and the level 
of performance required. The following is a list of key considerations:

•	 Task specificity: Discriminative models are more suitable for high-stakes applications, such 
as disease diagnosis, fraud detection, or credit risk assessment, where precision is crucial. 
However, generative models are more adept at creative tasks such as synthesizing images, text, 
music, or video.

•	 Data availability: Discriminative models tend to overfit (or memorize examples) when trained 
on small datasets, which may lead to poor generalization. On the other hand, because generative 
models are often pretrained on vast amounts of data, they can produce a diverse output even 
with minimal input, making them a viable choice when data are scarce.

•	 Model performance: Discriminative models outperform generative models in tasks where it is 
crucial to learn and explain a decision boundary between classes or where expected relationships 
in the data are well understood. Generative models usually excel in less constrained tasks that 
require a measure of perceived creativity and flexibility.

•	 Model explainability: While both paradigms can include models that are considered “black 
boxes” or not intrinsically interpretable, generative models can be more difficult, or at times, 
impossible to explain, as they often involve complex data generation processes that rely on 
understanding the underlying data distribution. Alternatively, discriminative models often 
focus on learning the boundary between classes. In use cases where model explainability is a key 
requirement, discriminative models may be more suitable. However, generative explainability 
research is gaining traction.
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•	 Model complexity: Generally, discriminative models require less computational power because 
they learn to directly predict some output given a well-defined set of inputs.

Alternatively, generative models may consume more computational resources, as their training 
objective is to jointly capture the intricate hidden relationships between both inputs and 
presumed outputs. Accurately learning these intricacies requires vast amounts of data and 
large computations. Computational efficiency in generative LLM training (e.g., quantization) 
is a vibrant area of research.

Ultimately, the choice between generative and discriminative models should be made by considering the 
trade-offs involved. Moreover, the adoption of these paradigms requires different levels of infrastructure, 
data curation, and other prerequisites. Occasionally, a hybrid approach that combines the strengths of 
both models can serve as an ideal solution. For example, a pretrained generative model can be fine-
tuned as a classifier. We will learn about task-specific fine-tuning in Chapter 5.

Now that we have explored the key distinctions between traditional ML (i.e., discriminative) and 
generative paradigms, including their distinct risks, we can look back at how we arrived at this paradigm 
shift. In the next section, we take a brief look at the evolution of generative AI.

Looking back at the evolution of generative AI
The field of generative AI has experienced an unprecedented acceleration, leading to a surge in the 
development and adoption of foundation models such as GPT. However, this momentum has been 
building for several decades, driven by continuous and significant advancements in ML and natural 
language generation research. These developments have brought us to the current generation of 
state-of-the-art models.

To fully appreciate the current state of generative AI, it is important to understand its evolution, beginning 
with traditional language processing techniques and moving through to more recent advancements.

Overview of traditional methods in NLP

Natural language processing (NLP) technology has enabled machines to understand, interpret, and 
generate human language. It emerged from traditional statistical techniques such as n-grams and 
hidden Markov models (HMMs), which converted linguistic structures into mathematical models 
that machines could understand.

Initially, n-grams and HMMs were the primary methods used in NLP. N-grams predicted the next 
word in a sequence based on the last “n” words, while HMMs modeled sequences by considering 
every word as a state in a Markov process. These early methods were good at capturing local patterns 
and short-range dependencies in language.

As computational power and data availability grew, more sophisticated techniques for natural language 
processing emerged. Among these was the recurrent neural network (RNN), which managed 
relationships across extended sequences and was proven to be effective in tasks where prior context 
influenced future predictions.
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Subsequently, long short-term memory networks (LSTMs) were developed.

Unlike traditional RNNs, LSTMs had a unique ability to retain relevant long-term information while 
disregarding irrelevant data, maintaining semantic relationships across prolonged sequences.

Further advancements led to the introduction of sequence-to-sequence models, often utilizing LSTMs 
as their underlying structure. These models revolutionized fields such as machine translation and text 
summarization by dramatically improving efficiency and effectiveness.

Overall, NLP evolved from traditional statistical methods to advanced neural networks, transforming 
how we interacted with machines and enabling countless applications, such as machine translation 
and information retrieval (IR) (or finding relevant text based on a query). As the NLP field matured, 
incorporating the strengths of traditional statistical methods and advanced neural networks, a 
renaissance was forming. The next generation of NLP advancements would introduce transformer 
architectures, starting with the seminal paper Attention is All You Need and later the release of models 
such as BERT and eventually GPT.

Arrival and evolution of transformer-based models

The release of the research paper titled Attention is All You Need in 2017 served as a paradigm shift in 
natural language processing. This pivotal paper introduced the transformer model, an architectural 
innovation that provided an unprecedented approach to sequential language tasks such as translation. 
The transformer model contrasted with prior models that processed sequences serially. Instead, it 
simultaneously processed different segments of an input sequence, determining its relevance based 
on the task. This innovative processing addressed the complexity of long-range dependencies in 
sequences, enabling the model to draw out the critical semantic information needed for a task. The 
transformer was such a critical advancement that nearly every state-of-the-art generative LLM applies 
some derivation of the original architecture. Its importance and influence motivate our detailed 
exploration and implementation of the original transformer in Chapter 3.

With the transformer came significant advancements in natural language processing, including GPT-1 
or Generative Pretrained Transformer 1 (Radford et al., 2018). GPT-1 introduced a novel directional 
architecture to tackle diverse NLP tasks.

Coinciding with GPT-1 was BERT, or bidirectional encoder representations from transformers, a 
pioneering work in the family of transformer-based models. BERT stood out among its predecessors, 
analyzing sentences forward and backward (or bi-directionally). This bidirectional analysis allowed BERT 
to capture semantic and syntactic nuances more effectively. At the time, BERT achieved unprecedented 
results when applied to complex natural language tasks such as named entity recognition, question 
answering, and sentiment analysis (Devlin et al., 2018).

Later, GPT-2, the much larger successor to GPT-1, attracted immense attention, as it greatly outperformed 
any of its predecessors across various tasks. In fact, GPT-2 was so unprecedented in its ability to 
generate human-like output that concerns about potential implications led to a delay in its initial 
release (Hern, 2019).
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Amid early concerns, OpenAI followed up with the development of GPT-3, signaling a leap in the 
potential of LLMs. Developers demonstrated the potential of training at a massive scale, reaching 175 
billion parameters (or adjustable variables learned during training), surpassing its two predecessors. 
GPT-3 was a “general-purpose” learner, capable of performing a wide range of natural language tasks 
learned implicitly from its training corpus instead of through task-specific fine-tuning. This capability 
sparked the exploration of foundation model development for general use across various domains 
and tasks. GPT-3’s distinct design and unprecedented scale led to a generation of generative models 
that could perform an indefinite number of increasingly complex downstream tasks learned implicitly 
through its extensive training.

Development and impact of GPT-4

OpenAI’s development of GPT-4 marked a significant advance in the potential of large-scale, multimodal 
models. GPT-4, capable of processing image and text inputs and producing text outputs, represented 
yet another giant leap ahead of predecessors.

GPT-4 exhibited human-level performance on various professional and academic benchmarks. For 
instance, it passed a simulated bar exam with a score falling into the top 10% of test-takers (OpenAI, 2023).

A key distinction of GPT-4 is what happens after pretraining. Open AI applied reinforcement learning 
with human feedback (RLHF)—a type of risk/reward training derived from the same technique used 
to teach autonomous vehicles to make decisions based on the environment they encounter. In the case 
of GPT-4, the model learned to respond appropriately to a myriad of scenarios, incorporating human 
feedback along the way. This novel refinement strategy drastically improved the model’s propensity for 
factuality and its adherence to desired behaviors. The integration of RLHF demonstrated how models 
could be better aligned with human judgment toward the goal of responsible AI.

However, despite demonstrating groundbreaking abilities, GPT-4 had similar limitations to earlier 
GPT models. It was not entirely reliable and had a limited context window (or input size). Meaning it 
could not receive large texts or documents as input. It was also prone to hallucination. As discussed, 
Hallucination is an anthropomorphized way of describing the model’s tendency to generate content 
that is not grounded in fact or reality. A hallucination occurs because generative language models 
(without augmentation) synthesize content purely based on semantic context and don’t perform 
any logical processing to verify factuality. This weakness presented meaningful risks, particularly in 
contexts where fact-based outcomes are paramount.

Despite limitations, GPT-4 made significant strides in language model performance. As with prior 
models, GPT-4’s development and potential use underscored the importance of safety and ethical 
considerations for future AI applications. As a result, the rise of GPT-4 accentuated the ongoing 
discussions and research into the potential implications of deploying such powerful models. In the 
next section, we briefly survey some of the known risks that are unique to generative AI.
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Looking ahead at risks and implications
Both generative and discriminative AI introduce unique risks and benefits that must be weighed 
carefully. However, generative methods can not only carry forward but also exacerbate many risks 
associated with traditional ML while also introducing new risks. Consequently, before we can adopt 
generative AI in the real world and at scale, it is essential to understand the risks and establish 
responsible governance principles to help mitigate them:

•	 Hallucination: This is a term widely used to describe when models generate factually inaccurate 
information. Generative models are adept at producing plausible-sounding output without basis 
in fact. As such, it is critical to ground generative models with factual information. The term 
“grounding” refers to appending model inputs with additional information that is known to 
be factual. We explore grounding techniques in Chapter 7. Additionally, it is essential to have 
a strategy for evaluating model outputs that includes human review.

•	 Plagiarism: Since generative models are sometimes trained on uncrated datasets, some training 
corpora may have included data without explicit permissions. Models may produce information 
that is subject to copyright protections or can be claimed as intellectual property.

•	 Accidental memorization: As with many ML models that train on immense corpora, generative 
models tend to memorize parts of the training data. In particular, they are prone to memorizing 
sparse examples that do not fit neatly into a broader pattern. In some cases, models could 
memorize sensitive information that can be extracted and exposed (Brundage et al., 2020; 
Carlini et al., 2020). Consequently, whether consuming a pretrained model or fine-tuning (i.e., 
continued model training), training data curation is essential.

•	 Toxicity and bias: Another byproduct of large-scale model training is that the model will 
inevitably learn any societal biases embedded in the training data. Biases can manifest as gender, 
racial, or socioeconomic biases in generated text or images, often replicating or amplifying 
stereotypes. We detail mitigations for this risk in Chapter 8.

With an understanding of some of the risks, we turn our focus to the nuanced implications of adopting 
generative AI:

•	 Ethical: As discussed, these models inevitably learn and reproduce the biases inherent in the 
training data, raising serious ethical questions. Similarly, concerns about data privacy and security 
have emerged due to the model’s susceptibility to memorizing and exposing its training data. This 
has led to calls for robust ethical guidelines and data privacy regulations (Gebru et al., 2018).

•	 Environmental: LLMs are computational giants, demanding unprecedented resources for 
training and implementation. Thus, they inevitably present environmental impacts. The energy 
consumption required to train an LLM produces substantial carbon dioxide emissions—roughly 
the equivalent lifetime emissions of five vehicles. Consequently, multiple efforts are underway 
to increase model efficiency and reduce carbon footprints. For example, techniques such as 
reduced bit precision training (or quantization) and parameter efficient fine-tuning (discussed 
in Chapter 5) reduce overall training time, helping to shrink carbon footprints.
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•	 Social: Along with environmental impacts, LLMs also have social implications. As these models 
become proficient at generating text, simulating intelligent conversation, and automating 
fundamental tasks, they present an unparalleled opportunity for job automation. Due to various 
complex factors, this potential for large-scale automation in the US may disproportionately 
affect marginalized or underrepresented communities. Thus, this amplifies prior concerns 
regarding labor rights and the need for additional protections to minimize harm.

•	 Business and labor: Along with broader socio-economic implications, we must examine more 
direct impacts on the business sector. While generative AI opens up new opportunities, changes 
in the labor market could bring about immense disruption if not addressed responsibly. Beyond 
labor impacts, AI advancements also significantly affect various business sectors. They can result 
in the creation of new roles, business models, and opportunities, requiring ongoing governance 
strategy and explorative frameworks that center on inclusivity, ethics, and responsible adoption.

Addressing these challenges will require technical and scientific improvements, data-specific regulations 
and laws, ethical guidelines, and human-centered AI governance strategies. These are integral to 
building an equitable, secure, and inclusive AI-driven future.

Having discussed the history, risks, and limitations of generative AI, we are now better equipped to 
explore the vast opportunities and applications of such transformative technology.

Introducing use cases of generative AI
Generative AI has already begun to disrupt various sectors. The technology is making waves across 
many disciplines, from enhancing language-based tasks to reshaping digital art. The following section 
offers examples of real-world applications of generative AI across different sectors:

•	 Traditional natural language processing: LLMs, such as Open AI’s GPT series, have elevated 
traditional NLP and NLG. As discussed, these models have a unique ability to generate coherent, 
relevant, and human-like text. The potential of these models was demonstrated when GPT-3 
outperformed classical and modern approaches in several language tasks, displaying an 
unprecedented understanding of human language. The release of GPT-4 and Claude 3 marked 
another milestone, raising the standard even further for state-of-the-art models.

•	 Digital art creation: The advent of “generative art” is evidence of the radical impact of generative 
AI in the field of digital art. For instance, artists can use AI generative models to create intricate 
designs, allowing them to focus on the conceptual aspect of art. It simplifies the process, reducing 
the need for high-level technical acumen.

•	 Music creation: In the music industry, generative AI can enhance the composition process. 
Several platforms offer high-quality AI-driven music creation tools that can generate long-
form musical compositions combining different music styles across various eras and genres.
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•	 Streamlining business processes: Several businesses have started employing generative AI to 
enable faster and more efficient processes. Generative AI-enabled operational efficiencies allow 
employees to focus on more strategic tasks. For example, fully integrated LLM email clients can 
organize emails and (combined with other technologies) learn to prioritize critical emails over time.

•	 Entertainment: While still largely experimental, LLMs show promising potential to disrupt 
creative writing and storytelling, particularly in the gaming industry. For example, procedural 
games could apply LLMs to enhance dynamic storytelling and create more engaging, personalized 
user experiences. As technology advances, we may see more mainstream adoption of LLMs in 
gaming, opening up new possibilities for interactive narratives.

•	 Fashion: In the fashion industry, generative models help designers innovate. By using a state-
of-the-art generative AI model, designers can create and visualize new clothing styles by simply 
tweaking a few configurations.

•	 Architecture and construction: In the architectural world, generative-enhanced tools can help 
architects and urban planners optimize and generate design solutions, leading to more efficient 
and sustainable architectural designs.

•	 Food industry: Emerging AI-driven cooking assistants can generate unique food combinations, 
novel recipes, and modified recipes for highly specific dietary needs.

•	 Education: Generative AI-enhanced educational platforms offer the automatic creation of 
study aids that can facilitate personalized learning experiences and can automatically generate 
tailored content to accommodate specific and diverse learning styles.

However, we must balance the breadth of opportunities with sophisticated guardrails and the continued 
promotion of ethical use. As data scientists, policymakers, and industry leaders, we must continue 
to work towards fostering an environment conducive to responsible AI deployment. That said, as 
generative AI continues to evolve, it presents a future replete with novel innovations and applications.

The future of generative AI applications
The relentless advancement of generative AI presents a future filled with both possibilities and complex 
challenges. Imagine a future where a generative model trained on the world’s leading climate change research 
can offer practical yet groundbreaking counteractive strategies with precise details about their application.

However, as we embrace an increasingly AI-centered future, we should not overlook the existing 
challenges. These involve the potential misuse of AI tools, unpredictable implications, and the 
profound ethical considerations underlying AI adoption. Additionally, sustainable and eco-conscious 
development is key, as training large-scale models can be resource-intensive

In an age of accelerated progress, collaboration across all stakeholders—from data scientists, AI 
enthusiasts, and policymakers to industry leaders—is essential. By being equipped with comprehensive 
oversight, robust guidelines, and strategic education initiatives, concerted efforts can safeguard a future 
where generative AI is ubiquitous.
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Despite these hurdles, the transformative potential of generative AI remains unquestionable. With its 
capacity to reshape industries, redefine societal infrastructures, and alter our ways of living, learning, 
and working, generative AI serves as a reminder that we are experiencing a pivotal moment—one 
propelled by decades of scientific research and computational ingenuity that are coalescing to bring 
us forward as a society.

Summary
In this chapter, we traced the evolution of generative AI, distinguished it from traditional ML, explored its 
evolution, discussed its risks and implications, and, hopefully, dispelled some common misconceptions. 
We contemplated some of the possibilities anchored by consideration for its responsible adoption.

As we move on to the next chapter, we will examine the fundamental architectures behind generative 
AI, giving us a foundational understanding of the key generative methods, including GANs, diffusion 
models, and transformers. These ML methods form the backbone of generative AI and have been 
instrumental in bringing about the remarkable advancements we see today.
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2
Surveying GenAI Types and 

Modes: An Overview of GANs, 
Diffusers, and Transformers

In the previous chapter, we established the key distinction between generative and discriminative 
models. Discriminative models focus on predicting outputs by learning p(output∣input), or the 
conditional probability of some expected output given an input or set of inputs. In contrast, generative 
models, such as Generative Pretrained Transformer (GPT), generate text by predicting the next token 
(a partial word, whole word, or punctuation) using p(next token∣previous tokens), based 
on the probabilities of possible continuations given the current context. Tokens are represented as 
vectors containing embeddings that capture latent features and rich semantic dependencies learned 
through extensive training.

We briefly surveyed leading generative approaches, including Generative Adversarial Networks 
(GANs), Variational Autoencoders (VAEs), diffusion models, and autoregressive transformers. Each 
methodology possesses unique strengths suitable for different data types and tasks. For example, GANs 
are adept at generating high-fidelity photographic images through an adversarial process. Diffusion 
models take a probabilistic approach, iteratively adding and removing noise from data to learn robust 
generative representations. Autoregressive transformers leverage self-attention and massive scale to 
achieve remarkable controlled text generation.

In this chapter, we will explore the theoretical foundations and real-world applications of these 
techniques in greater depth. We will make direct comparisons, elucidating architectural innovations 
and enhancements that improve training stability and output quality over time. Through practical 
examples, we will see how researchers have adapted these models to produce art, music, videos, 
stories, and so on.
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To enable an unbiased comparison, we will concentrate primarily on image synthesis tasks. GANs 
and diffusion models are specifically architected for image data, harnessing advances in convolutional 
processing and computer vision. Transformers, powered by self-attention, excel at language modeling 
but can also generate images. This will allow us to benchmark performance on a common task.

By the end of this chapter, we will have implemented state-of-the-art image generation models and 
explored how these core methods enhance and complement each other.

Understanding General Artificial Intelligence (GAI) Types – 
distinguishing features of GANs, diffusers, and transformers
The often-stunning human-like quality we experience from GAI can be attributed to deep-generative 
machine learning advances. In particular, three fundamental methods have inspired many derivative 
innovations – GANs, diffusion models, and transformers. Each has its distinct strengths and is 
particularly well-suited for specific applications.

We briefly described GANs, a groundbreaking approach that exploits the adversarial interplay between 
two competing neural networks – a generator and a discriminator – to generate hyper-realistic 
synthetic data. Over time, GANs have seen substantial advancements, achieving greater control 
in data generation, higher image fidelity, and enhanced training stability. For instance, NVIDIA’s 
StyleGAN has created highly detailed and realistic human faces. The adversarial training process of 
GANs, where one network generates data and the other evaluates it, allows you to create highly refined 
and detailed synthetic images, enhancing realism with each training iteration. The synthetic images 
generated can be utilized in a plethora of domains. In the entertainment industry, they can be used 
to create realistic characters for video games or films. In research, they provide a means to augment 
datasets, especially in scenarios where real data is scarce or sensitive. Moreover, in computer vision, 
these synthetic images aid in training and fine-tuning other machine-learning models, advancing 
applications like facial recognition.

Diffusion models, an innovative generative modeling alternative, explicitly address some GAN 
limitations. As discussed briefly in Chapter 1, diffusion models adopt a unique approach to introducing 
and systematically removing noise, enabling high-quality image synthesis with less training complexity. 
In medical imaging, diffusion models can significantly enhance image clarity by generating high-
resolution synthetic examples to train other machine-learning models. Introducing and then iteratively 
removing noise can help reconstruct high-fidelity images from lower-quality inputs, which is invaluable 
in scenarios where obtaining high-resolution medical images is challenging.

Simultaneously, generative transformers, initially designed for language modeling, have been adopted 
for multimodal synthesis. Today, transformers are not confined to language and have permeated into 
audio, images, and video applications. For instance, OpenAI’s GPT-4 excels in processing and generating 
text, while DALL-E creates images from textual descriptions, a perfect example of the interplay 
between methods. When integrated, GPT-4 and DALL-E form a robust multimodal system. GPT-4 
processes and understands textual instructions, while DALL-E takes the interpreted instructions to 
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generate corresponding visual representations. A practical application of this combination could be 
automated digital advertisement creation. For example, given textual descriptions of a product and 
the desired aesthetic, GPT-4 could interpret these instructions, and DALL-E could generate visually 
compelling advertisements accordingly.

Deconstructing GAI methods – exploring GANs, diffusers, 
and transformers
Let’s deconstruct these core approaches to understand their distinct characteristics and illustrate their 
transformative role in advancing generative machine learning. As GAI continues to move forward, 
it’s crucial to understand how these approaches drive innovation.

A closer look at GANs

GANs, introduced by Goodfellow et al. in 2014, primarily consist of two neural networks – the 
Generator (G) and the Discriminator (D). G aims to create synthetic data resembling real data, while 
D strives to distinguish real from synthetic data.

In this setup, the following occurs:

1.	 G receives input from a “latent space,” a high-dimensional space representing structured 
randomness. This structured randomness serves as a seed to generate synthetic data, transforming 
it into meaningful information.

2.	 D evaluates the generated data, attempting to differentiate between real (or reference) and 
synthetic data.

In short, the process begins with G deriving random noise from the latent space to create data. 
This synthetic data, along with real data, is supplied to D, which then tries to discern between 
the two. Feedback from D informs the parameters of G to refine its data generation process. 
The adversarial interaction continues until an equilibrium is reached.

3.	 Equilibrium in GANs occurs when D can no longer differentiate between real and synthetic 
data, assigning an equal probability of 0.5 to both. Arriving at this state signals that the 
synthetic data produced by G is indistinguishable from real data, which is the core objective 
of the synthesis process.

Ultimately, the success of GANs has had meaningful implications for various sectors. In the automotive 
industry, GANs have been used to simulate real-world scenarios for autonomous vehicle testing. In 
the entertainment sector, GANs are deployed to generate digital characters and realistic environments 
for filmmaking and game design. In the art world, GANs can literally craft new words. Moreover, the 
development of GANs has continued to move forward over the years with significant improvements 
in quality, control, and overall performance.
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Advancement of GANs

Since its inception, GAN technology has evolved significantly with several notable advancements:

•	 Conditional GANs (cGANs): Introduced by Mirza and Osindero in 2014, conditional GANs 
incorporated specific conditions during data generation, enabling more controlled outputs. cGANs 
have been used in tasks such as image-to-image translation (e.g., converting photos into paintings).

•	 Deep Convolutional GANs (DCGANs): In 2015, Radford et al. enhanced GANs by integrating 
convolutional layers, which help to analyze image data in small, overlapping regions to capture 
fine granularity, substantially improving the visual quality of the synthetic output. DCGANs 
can generate realistic images for applications such as fashion design, where the model evolves 
new designs from existing trends.

•	 Wasserstein GANs (WGANs): Introduced by Arjovsky et al. in 2017, Wasserstein GANs applied the 
Wasserstein distance metric to GANs’ objective function, facilitating a more accurate measurement 
of differences between real and synthetic data. Specifically, the metric helps you find the most 
efficient way to make the generated data distribution resemble the real data distribution. This 
small adjustment leads to a more stable learning process, minimizing volatility during training. 
WGANs have helped generate realistic medical imagery to aid in training diagnostic AI algorithms, 
improving a model’s ability to generalize from synthetic to actual data.

Following the advent of Wasserstein GANs, the landscape experienced a surge of inventive expansions, 
each tailor-made to address specific challenges or open new avenues in synthetic data generation:

•	 Progressively growing GANs incrementally increase the resolution during training, starting 
with lower-resolution images and gradually moving to higher resolution. This approach allows 
the model to learn coarse-to-fine details effectively, making training more manageable and 
generating high-quality images (Karras et al. 2017). These high-resolution images can enhance 
the realism and immersion of virtual reality environments.

•	 CycleGANs facilitates image-to-image translations, bridging domain adaptation tasks (Zhu 
et al., 2017). For example, a CycleGAN could transform a summer scene into a winter scene 
without requiring example pairs (e.g., summer-winter) during training. CycleGANs have 
been used to simulate weather conditions in autonomous vehicle testing, evaluating system 
performance under varying environmental conditions.

•	 BigGANs push the boundaries in high-resolution image generation, showcasing the versatility 
of GANs in complex generation tasks. They achieve this by scaling up the size of the model 
(more layers and units per layer) and the batch size during training, alongside other architectural 
and training innovations (Brock et al., 2018). BigGANs have been used to generate realistic 
textures for video games, enhancing gaming environments’ realism.

These developments significantly broadened what GANs could achieve, ranging from high-resolution 
image synthesis to domain adaptation and cross-modal generation tasks. However, despite these 
incredible advancements, GANs have suffered from some continual limitations, which inspired 
alternative approaches such as diffusion.
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Limitations and challenges of GANs

The training process of GANs requires a careful balance between the G and D networks. It requires 
substantial computational resources, often demanding powerful GPUs and enormous datasets to achieve 
desirable outcomes. Moreover, there are complexities in training GANs that arise from challenges 
such as vanishing gradients and mode collapse. While the vanishing gradient problem is a problem 
broadly affecting deep neural networks, mode collapse is a challenge that is particularly unique to the 
training of GANs. Let’s explore these a bit further:

•	 Vanishing gradients: This issue arises during the neural network training phase when the 
gradient of the loss function diminishes to a point where the learning either drastically slows 
or halts. The crux of GANs lies in the delicate balance of learning between the G and D models. 
Disproportionate learning can hinder the overall training process. In practical terms, the issue 
of vanishing gradients can lead to longer training times and increased computational costs, 
which might render GANs impractical for time-sensitive or resource-constrained applications.

•	 Mode collapse: Inherent to GANs, mode collapse occurs when the G starts producing a narrow 
variety of samples, thereby stifling output diversity and undermining a network’s effectiveness. 
Techniques such as a gradient penalty and spectral normalization have alleviated these issues. 
This phenomenon can significantly degrade the quality of generated data, limiting the use of 
GANs in applications that require diverse outputs, such as data augmentation for machine 
learning or generating diverse design alternatives in creative industries.

Of course, GANs carry the same ethical considerations as any state-of-the-art generative synthesis. 
For instance, they can be used to create deepfakes or generate biased outputs that reinforce societal 
prejudices. For example, when GANs, often used to generate synthetic data (e.g., faces), underrepresent 
certain groups, downstream applications may exhibit gender or racial bias (Kenfack et al., 2021).

Even with the advent of other generative models such as diffusion models and Transformer-based 
image generators, GANs have played a seminal role in shaping the trajectory of generative image 
synthesis, showcasing both the potential and some of the challenges inherent in this domain.

Now that we better understand GANs in the context of deep generative models, let’s shift our focus 
to a successor in image generation, the diffusion model.

A closer look at diffusion models

Having explored the dynamics of GANs, let’s transition our attention to a subsequent innovation in 
image generation – the diffusion model. Initially proposed by Sohl-Dickstein et al. in 2015, diffusion 
models present a novel approach, where a neural network iteratively introduces and subsequently 
removes noise from data to generate highly refined images. Unlike GANs, which leverage an adversarial 
mechanism involving two contrasting models, diffusion models apply a more gradual, iterative process 
of noise manipulation within the data.
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In practical terms, GANs have shown substantial merit in art and design, creating realistic faces or 
generating sharp, high-fidelity images from descriptions. They are also used in data augmentation, 
expanding datasets by generating realistic synthetic data to augment the training of machine 
learning models.

Conversely, diffusion models excel in tasks requiring a structured approach to image generation, 
such as in medical imaging. Their iterative process can enhance the quality of medical images, such 
as MRI or CT scans, where noise reduction and clarity are paramount. This makes diffusion models 
invaluable in clinical settings, aiding in better diagnostics and analysis. Moreover, their controlled 
and gradual process offers a more predictable or stable training process compared to the adversarial 
and dynamic training of GANs.

The foundation of diffusion models is anchored in two primary processes:

•	 A forward diffusion process: This process begins with clean data (x₀) and iteratively introduces 
Gaussian noise, akin to progressively applying a fog-like filter, transforming the data into 
indistinguishable noise (xₜ).

•	 A learned reverse model: Following the forward diffusion, the “reverse model” (pθ) attempts 
to eliminate (or de-fog) the noise from the noisy data (xₜ), aiming to revert to the original 
clean state (xₜ₋₁). Specifically, this reversion is orchestrated by estimating the probability of 
transitioning from the noisy state back to the clear state, using a conditional distribution denoted 
as pθ(xₜ₋₁|xₜ). A conditional distribution tells us the likelihood of one event happening 
when we know another related event has occurred. In this case, the reversion estimates the 
likelihood of reverting to the original state, given some amount of noise.

In the pivotal work Score-Based Generative Modeling through Stochastic Differential Equations, the 
authors propose a novel framework that unifies score-based generative models and diffusion probabilistic 
modeling by employing Stochastic Differential Equations (SDEs). This framework involves the 
transformation of data distributions to a known prior distribution through the gradual addition and 
then removal of noise, guided by SDEs. Optimizing the reverse-time SDE – dependent only on the 
score of the perturbed data distribution – allows you to generate new samples. Stochastic Gradient 
Descent (SGD) is then applied to fine-tune the model parameters until arriving at an improved pθ.

The reverse model (pθ) was implemented using convolutional networks to predict variations in 
the Gaussian noise distribution – a critical component of the noise-introduction process within the 
forward diffusion. Initially, the efficacy of this approach was validated on more straightforward datasets. 
However, the methodology’s applicability was later significantly improved to handle more complex 
images (Ho et al., 2020). This expansion demonstrated the practical potential of diffusion models in 
generating highly refined images across a broader spectrum of complexities.
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Advancement of diffusion models

Since its inception, diffusion model technology has witnessed key advancements, propelling its 
capabilities in image generation:

•	 Simplified training objectives: Ho et al. proposed simplified training objectives that predict 
Gaussian noise directly, eliminating the need for conditional means and facilitating the 
application to more complex datasets (Ho et al., 2020). This advancement facilitated handling 
more complex datasets, potentially aiding in tasks such as anomaly detection or complex data 
synthesis, which could be resource-intensive with traditional models.

•	 UNet modules with self-attention: Ho et al. also incorporated UNet modules with self-attention 
into the diffusion model architecture, inspired by PixelCNN++ by Salimans et al. (2017), 
enhancing a model’s performance on complex datasets (Ho et al., 2020). Again, enhancing 
performance on complex datasets facilitates better image restoration, which is particularly 
beneficial in fields such as medical imaging or satellite imagery analysis, where high-fidelity 
image reconstruction is crucial.

•	 Synchronization with SDEs: Song et al. defined diffusion models as solutions to SDEs, linking 
score learning with denoising score-matching losses and expanding model usage for image 
generation, editing, in-painting, and colorization (Song et al., 2020).

Following these foundational advancements, diffusion models witnessed a wave of innovative 
enhancements as researchers introduced novel methodologies to address existing challenges and 
broaden a model’s applicability in generative modeling tasks. These advancements include the following:

•	 Noise conditioning and annealing strategies: Song et al. improved score-based models by 
including noise conditioning and annealing strategies, achieving performance comparable to 
GANs on benchmark datasets like the Flickr-Faces-HQ dataset  (Song et al., 2021), which is a 
high-quality image dataset of human faces designed to measure GAN performance. Achieving 
performance comparable to GANs could make diffusion models a viable alternative for high-
fidelity image generation tasks in areas where GANs are traditionally used.

•	 Latent Diffusion Models (LDMs): Rombach et al. addressed computational inefficiency 
by proposing LDMs, which operate in a compressed latent space learned by autoencoders, 
employing perceptual losses to create a visually equivalent, reduced latent space (Rombach et 
al., 2021). By addressing computational inefficiency, LDMs could expedite the image generation 
process, making them suitable for real-time applications or scenarios where computational 
resources are limited.

•	 Classifier-free guidance: Ho & Salimans introduced classifier-free guidance for controlled 
generation without relying on pre-trained networks, marking a step toward more flexible 
generation techniques (Ho & Salimans, 2022). This advancement led to more flexible generation 
techniques, enabling more controlled and customized image generation in applications such as 
design, advertising, or content creation without relying on pre-trained networks.
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Subsequent explorations in the diffusion model domain extended its applications, showcasing versatility:

•	 Video generation: Ho et al. adapted diffusion models for video generation, demonstrating 
their utility beyond static image generation (Ho et al., 2022)

•	 3D data processing: Luo & Hu extended the application to 3D data processing, showcasing 
the flexibility of diffusion models (Luo & Hu, 2021)

The evolution of diffusion models has led to enhanced image generation and expanded applications in 
video, 3D data processing, and rapid learning methodologies. However, the methodology does have 
its  challenges and limitations, outlined in some detail in the section that follows..

Limitations and challenges of diffusion models

Despite their evident benefits and notable progress, diffusion models have some unique limitations, 
such as the following:

•	 Sampling speed: A notable limitation of diffusion models is the slow sampling process, particularly 
when compared to GANs. Sampling, in this context, refers to the process of generating new 
data points from the learned distribution of a model. The speed at which new samples can be 
generated is crucial for many real-time or near-real-time applications, and the slower sampling 
speed of diffusion models can be a significant drawback.

•	 Stability during large-scale training: The stability of diffusion models during large-scale training 
is another area requiring further exploration. Large-scale training refers to training a model on 
a substantial amount of data, sometimes leading to instability in the model’s learning process. 
Ensuring stability during this phase is crucial to achieve reliable and consistent performance 
from the model.

A close examination of the societal impact of the media generated by these models is crucial, especially 
given the level of fine control now possible over the generated content. However, diffusion models’ 
inherent simplicity, versatility, and positive inductive biases signify a bright future. These attributes 
suggest a trajectory of rapid development within generative modeling, potentially integrating diffusion 
models as pivotal components in various disciplines, such as computer vision and graphics.

A closer look at generative transformers

The revolutionary advent of transformer models has significantly impacted the task of generating 
high-fidelity images from text descriptions. Notable models such as CLIP (Contrastive Language-
Image Pretraining) and DALL-E utilized transformers in unique ways to create images based on 
natural language captions. This section will discuss the transformer-based approach for text-to-image 
generation, its foundations, the key techniques, the resulting benefits, and some challenges.
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A brief overview of transformer architecture

The original transformer architecture, introduced by Vaswani et al. in 2017, is a cornerstone of many 
modern language-processing systems. In fact, the transformer may be considered the most important 
architecture in the area of GAI, as it is foundational to the GPT series of models and many other state-
of-the-art generative methods. As such, we’ll cover the architecture briefly in our survey of generative 
approaches but will have a dedicated chapter, where we will have the opportunity to deconstruct and 
implement the transformer from scratch.

At the core of the transformer architecture lies the self-attention mechanism, a unique approach 
that captures complex relationships among different elements within an ordered data sequence. These 
elements, known as tokens, represent words in a sentence or characters in a word based on the level 
of granularity chosen for tokenization.

The principle of attention in this architecture enables a model to focus on certain pivotal aspects of 
the input data while potentially disregarding less significant parts. This mechanism augments the 
model’s understanding of the context and the relative importance of words in a sentence.

The transformer bifurcates into two main segments, the encoder and the decoder, each comprising multiple 
layers of self-attention mechanisms. While the encoder discerns relationships between different positions 
in the input sequence, the decoder focuses on the outputs from the encoder, employing a variant of self-
attention termed masked self-attention to prevent consideration of future outputs it hasn’t generated yet.

The calculation of attention weights through the scaled dot-product of query and key vectors plays a 
crucial role in determining the level of focus on different parts of the input. Additionally, multi-head 
attention allows the model to channel attention toward multiple data points simultaneously.

Lastly, to retain the sequence order of data, the model adopts a strategy known as positional encoding. 
This mechanism is vital for tasks requiring an understanding of sequence or temporal dynamics, 
ensuring the model preserves the initial order of data throughout its processing.

Again, we will revisit the transformer architecture in Chapter 3 to further reinforce our understanding, 
as it is foundational to the continued research and evolution of generative AI. Nevertheless, with at least 
a fundamental grasp of the Transformer architecture, we are better positioned to dissect transformer-
driven generative modeling paradigms across a spectrum of applications.

Generative modeling paradigms with transformers

In tackling various tasks, transformers adopt distinct training paradigms aligning with the task at 
hand. For example, discriminative tasks such as classification might use a masking paradigm:

•	 Masked Language Modeling (MLM): MLM is a discriminative pretraining technique used 
by models such as BERT (Bidirectional Encoder Representations from Transformers). 
During training, some percentage of input tokens are randomly masked out. The model must 
then predict the original masked words based on the context of the surrounding unmasked 
words. This teaches the model to build robust context-based representations, facilitating many 
downstream natural language processing (NLP) tasks.
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MLM, as utilized in BERT, has been instrumental in enhancing the performance of NLP systems 
across various domains. For instance, it can power medical coding systems in healthcare by accurately 
identifying and categorizing medical terms within clinical notes. This automatic coding can save 
significant time and reduce errors in medical documentation, thereby improving the efficiency and 
accuracy of healthcare data management.

For generative tasks, the focus shifts to creating new data sequences, requiring different training paradigms:

•	 Sequence-to-sequence modeling: Sequence-to-sequence models employ both an encoder and 
a decoder. The encoder maps the input sequence to a latent representation. The decoder then 
generates the target sequence token by token from that representation. This paradigm is useful 
for tasks such as translation, summarization, and question-answering.

•	 Autoregressive modeling: Autoregressive modeling generates sequences by predicting the 
next token conditioned only on previous tokens. The model produces outputs one step at a 
time, with each new token depending on those preceding it. Autoregressive transformers such 
as GPT leverage this technique for controlled text generation. 

Transformers combine self-attention for long-range dependencies, pre-trained representations, and 
autoregressive decoding to adapt to discriminative and generative tasks.

Advanced generative synthesis can be achieved with different architectures that make trade-offs 
between complexity, scalability, and specialization. For example, instead of using both the encoder and 
decoder, many state-of-the-art generative models employ a decoder-only or encoder-only approach. 
The encoder-decoder framework is often the most computationally intensive learning to specialize in, 
as it increases model size. Decoder-only architectures leverage powerful pre-trained language models 
such as GPT as the decoder, reducing parameters through weight sharing. Encoder-only methods forego 
decoding, instead, they encode inputs and perform regression or search on the resulting embeddings. 
Each approach has advantages that suit certain use cases, datasets, and computational budgets. In 
the following sections, we explore examples of models that employ these derivative transformer 
architectures for creative applications, such as image generation and captioning.

Encoder-only approach

In certain models, only the encoder network maps the input to an embedding space. The output is then 
generated directly from this embedding, eliminating the need for a decoder. While this straightforward 
architecture has typically found its place in classification or regression tasks, recent advancements have 
broadened its application to more complex tasks. In particular, models developed for tasks such as image 
synthesis leverage the encoder-only setup to process both text and visual inputs, creating a multimodal 
relationship that facilitates the generation of high-fidelity images from natural language instruction.

Decoder-only approach

Similarly, some models operate using a decoder-only strategy, where a singular decoder network is 
tasked with both encoding the input and generating output. This mechanism starts by joining the 
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input and output sequences, which the decoder processes. Despite its simplicity and the characteristic 
sharing of parameters between input and output stages, the effectiveness of this architecture relies 
heavily on the pretraining of robust decoders. Recently, even more complex tasks such as text-to-
image synthesis have seen the successful deployment of the decoder-only architecture, illustrating its 
versatility and adaptability to diverse applications.

Advancement of transformers

Transformer mechanisms with other novel techniques to tackle generative tasks. This evolution led 
to distinct approaches to handling text and image generation. In this section, we will explore some of 
these innovative models and their unique methodologies in advancing GAI.

Encoder-decoder image generation with DALL-E

Introduced by Ramesh et al. in 2021, DALL-E employs an encoder-decoder framework to facilitate 
text-to-image generation. This model comprises two primary components:

•	 Text encoder: Applies the transformer’s encoder, processing plain text to derive a semantic 
embedding that serves as the context for the image decoder.

•	 Image decoder: Applies the transformer’s decoder to generate the image autoregressively, 
predicting each pixel based on the text embedding and previously predicted pixels.

By training on image-caption datasets, DALL-E refines the transition from text to detailed image 
renderings. This setup underscores the capability of dedicated encoder and decoder modules for 
conditional image generation.

Encoder-only image captioning with CLIP

CLIP, conceptualized by Radford et al. in 2021, adopts an encoder-only approach for image-text tasks. 
Key components include a visual encoder and a text encoder.

Visual Encoder and Text Encoder process the image and candidate captions, respectively, determining 
the matching caption based on encoded representations.

Pretraining on extensive image-text datasets enables CLIP to establish a shared embedding space, 
facilitating efficient inference for retrieval-based captioning.

Improving image fidelity with scaled transformers (DALL-E 2)

Ramesh et al. in 2022 extended DALL-E to DALL-E 2, showcasing techniques to enhance visual quality:

•	 A scaled-up decoder: By expanding the decoder to 3.5 billion parameters and applying classifier-
free guidance during sampling, visual quality in complex image distributions such as human 
faces is significantly improved.
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•	 Hierarchical decoding for high-resolution images (GLIDE): Proposed by Nichol et al. in 
2021, GLIDE employs a hierarchical generation strategy.

•	 A coarse-to-fine approach: This entails an initial low-resolution image prediction followed 
by progressive detailing through up-sampling and refining, capturing global structure and 
high-frequency textures.

Multimodal image generation with GPT-4

GPT-4 developed by OpenAI, is a powerful multimodal model based on the Transformer architecture. 
GPT-4 demonstrates a capability for conditional image generation without requiring continued 
training or fine-tuning:

•	 Pretraining and fine-tuning: The massive scale of GPT-4 and its pretraining on diverse datasets 
enable a robust understanding of relationships between textual and visual data.

•	 Multimodal generation: GPT-4 can generate images based on text descriptions. The model uses 
a deep neural network to encode the semantic meaning of the text into a visual representation. 
Given a text prompt, GPT-4 generates an image by predicting the visual content consistent with 
the provided text. This involves taking high-dimensional text embeddings and processing them 
through successive neural network layers to generate a corresponding visual representation.

Using a pretrained multimodal model eliminates the need for a separate encoder module for image 
inputs, facilitating rapid adaptation for image generation tasks. This approach underscores the versatility 
and power of Transformer architectures in generative tasks, providing a streamlined methodology to 
translate text into high-quality images.

Transformer architectures offer many benefits for controlled image generation when compared to 
GANs. Their autoregressive nature ensures precise control over image construction while allowing you 
to adapt to varying computational needs and diverse downstream applications. However, transformers 
also introduce new challenges in this domain.

Limitations and challenges of transformer-based approaches

Some early transformers-based approaches demonstrated slower sampling speed and restricted 
fidelity compared to GANs. Generating or manipulating images while maintaining precise control 
over specific attributes or characteristics of the objects within those images remains challenging. 
Additionally, training large-scale transformers that can overcome these challenges demands extensive 
computing resources. Notwithstanding, current multimodal results demonstrate a rapidly evolving 
and promising landscape.

We must also remember that alongside technical challenges there are broader sociotechnical implications 
and considerations.
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Bias and ethics in generative models

Significant advancements in generative models such as GANs, diffusers, and transformers necessitate 
serious contemplation of potential bias and ethical implications.

We need to remain alert to the risk of reinforcing prejudices and stereotypes that reflect skewed training 
data. For instance, diffusion models trained on data that over-represents specific demographics might 
propagate these biases in their output. Analogously, language models exposed to toxic or violent 
content during training might generate similar content.

The directive nature of prompt-based generation also, unfortunately, opens doors to misuse if 
deployed carelessly. Transformers risk facilitating impersonation, misinformation, and the creation 
of deceptive content. Image synthesis models such as GANs could potentially be exploited to generate 
non-consensual deepfakes or artificial media.

Additionally, the potential for ultra-realistic output prompts ethical dilemmas regarding consent, 
privacy, identity, and copyright. The ability to create convincingly real yet fictional faces or voices 
complicates the distinction between real and synthetic, necessitating careful examination of training 
data sources and generative capabilities.

Further, as these technologies become ubiquitous, their societal impact must be considered. Defining 
clear policies will be crucial as the distinction between authentic and AI-generated content becomes 
increasingly ambiguous. Upholding principles of integrity, attribution, and consent remains vital.

Despite these risks, the potential benefits of generative models are substantial. Addressing bias proactively, 
advocating transparency, auditing data and models, and implementing safeguards become increasingly 
critical as technologies evolve. Ultimately, the responsibility to ensure fairness, accountability, and 
ethical practice falls on all developers and practitioners.

Applying GAI models – image generation using GANs, 
diffusers, and transformers
In this hands-on section, we’ll reinforce the concepts discussed throughout the chapter by putting 
them into practice. You’ll get a first-hand experience and deep dive into the actual implementation 
of generative models, specifically GANs, diffusion models, and transformers.

The Python code provided will guide you through this process. Manipulating and observing the code 
in action will build your understanding of the intricate workings and potential applications of these 
models. This exercise will provide insight into model capabilities for tasks like generating art from 
prompts and synthesizing hyper-realistic images.

We’ll be utilizing the highly versatile PyTorch library, a popular choice among machine learning 
practitioners, to facilitate our operations. PyTorch provides a powerful and dynamic toolset to define 
and compute gradients, which is central to training these models.
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In addition, we’ll also use the diffusers library. It’s a specialized library that provides functionality 
to implement diffusion models. This library enables us to reproduce state-of-the-art diffusion models 
directly from our workspace. It underpins the creation, training, and usage of denoising diffusion 
probabilistic models at an unprecedented level of simplicity, without compromising the models’ complexity.

Through this practical session, we’ll explore how to operate and integrate these libraries and implement 
and manipulate GANs, diffusers, and transformers using the Python programming language. This 
hands-on experience will complement the theoretical knowledge we have gained in the chapter, 
enabling us to see these models in action in the real world.

By the end of this section, you will not only have a conceptual understanding of these generative models 
but also understand how they are implemented, trained, and used for several innovative applications 
in data science and machine learning. You’ll have a much deeper understanding of how these models 
work and the experience of implementing them yourself.

Working with Jupyter Notebook and Google Colab

Jupyter notebooks enable live code execution, visualization, and explanatory text, suitable for prototyping 
and data analysis. Google Colab, conversely, is a cloud-based version of Jupyter Notebook, designed 
for machine learning prototyping. It provides free GPU resources and integrates with Google Drive 
for file storage and sharing. We’ll leverage Colab as our prototyping environment going forward.

Stable diffusion transformer

We begin with a pre-trained stable diffusion model, a text-to-image latent diffusion model created by 
researchers and engineers from CompVis, Stability AI, and LAION (Patil et al., 2022). The diffusion 
process is used to draw samples from complex, high-dimensional distributions, and when it interacts 
with the text embeddings, it creates a powerful conditional image synthesis model.

The term “stable” in this context refers to the fact that during training, a model maintains certain 
properties that stabilize the learning process. Stable diffusion models offer rich potential to create 
entirely new samples from a given data distribution, based on text prompts.

Again, for our practical example, we will Google Colab to alleviate a lot of initial setups. Colab also provides 
all of the computational resources needed to begin experimenting right away.  We start by installing some 
libraries, and with three simple functions, we will build out a minimal StableDiffusionPipeline 
using a well-established open-source implementation of the stable diffusion method.

First, let’s navigate to our pre-configured Python environment, Google Colab, and install the 
diffusers open-source library, which will provide most of the key underlying components we 
need for our experiment.
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In the first cell, we install all dependencies using the following bash command. Note the exclamation 
point at the beginning of the line, which tells our environment to reach down to its underlying process 
and install the packages we need:

!pip install pytorch-fid torch diffusers clip transformers accelerate

Next, we import the libraries we’ve just installed to make them available to our Python program:

from typing import List
import torch
import matplotlib.pyplot as plt
from diffusers import StableDiffusionPipeline, DDPMScheduler

Now, we’re ready for our three functions, which will execute the three tasks – loading the pre-trained 
model, generating the images based on prompting, and rendering the images:

def load_model(model_id: str) -> StableDiffusionPipeline:
    """Load model with provided model_id."""
    return StableDiffusionPipeline.from_pretrained(
        model_id, 
        torch_dtype=torch.float16, 
        revision="fp16", 
        use_auth_token=False
    ).to("cuda")

def generate_images(
    pipe: StableDiffusionPipeline, 
    prompts: List[str]
) -> torch.Tensor:
    """Generate images based on provided prompts."""
    with torch.autocast("cuda"):
        images = pipe(prompts).images
    return images

def render_images(images: torch.Tensor):
    """Plot the generated images."""
    plt.figure(figsize=(10, 5))
    for i, img in enumerate(images):
        plt.subplot(1, 2, i + 1)
        plt.imshow(img)
        plt.axis("off")
    plt.show()
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In summary, load_model loads a machine learning model identified by model_id onto a GPU 
for faster processing. The generate_images function takes this model and a list of prompts to 
create our images. Within this function, you will notice torch.autocast("cuda"), which is a 
special command that allows PyTorch (our underlying machine learning library) to perform operations 
faster while maintaining accuracy. Lastly, the render_images function displays these images in 
a simple grid format, making use of the matplotlib visualization library to render our output.

With our functions defined, we select our model version, define our pipeline, and execute our image 
generation process:

# Execution
model_id = "CompVis/stable-diffusion-v1-4"
prompts = [
    "A hyper-realistic photo of a friendly lion",
    "A stylized oil painting of a NYC Brownstone"
]

pipe = load_model(model_id)
images = generate_images(pipe, prompts)
render_images(images)

The output in Figure 2.1 is a vivid example of the imaginativeness and creativity we typically expect 
from human art, generated entirely by the diffusion process. Except, how do we measure whether the 
model was faithful to the text provided?

Figure 2.1: Output for the prompts “A hyper-realistic photo of a friendly lion” 

(left) and “A stylized oil painting of a NYC Brownstone” (right)
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The next step is to evaluate the quality and relevance of our generated images in relation to the prompts. 
This is where CLIP comes into play. CLIP is designed to measure the alignment between text and 
images by analyzing their semantic similarities, giving us a true quantitative measure of the fidelity 
of our synthetic images to the prompts.

Scoring with the CLIP model

CLIP is trained to understand the relationship between text and images by learning to place similar 
images and text near each other in a shared space. When evaluating a generated image, CLIP checks 
how closely the image aligns with the textual description provided. A higher score indicates a better 
match, meaning the image accurately represents the text. Conversely, a lower score suggests a deviation 
from the text, indicating a lesser quality or fidelity to the prompt, providing a quantitative measure 
of how well the generated image adheres to the intended description.

Again, we will import the necessary libraries:

from typing import List, Tuple
from PIL import Image
import requests
from transformers import CLIPProcessor, CLIPModel
import torch

We begin by loading the CLIP model, processor, and necessary parameters:

# Constants
CLIP_REPO = "openai/clip-vit-base-patch32"

def load_model_and_processor(
    model_name: str
) -> Tuple[CLIPModel, CLIPProcessor]:
    """
    Loads the CLIP model and processor.
    """
    model = CLIPModel.from_pretrained(model_name)
    processor = CLIPProcessor.from_pretrained(model_name)
    return model, processor

Next, we define a processing function to adjust the textual prompts and images, ensuring that they 
are in the correct format for CLIP inference:

def process_inputs(
    processor: CLIPProcessor, prompts: List[str],
    images: List[Image.Image]) -> dict:
"""
Processes the inputs using the CLIP processor.
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"""
    return processor(text=prompts, images=images,
        return_tensors="pt", padding=True)

In this step, we initiate the evaluation process by inputting the images and textual prompts into the 
CLIP model. This is done in parallel across multiple devices to optimize performance. The model then 
computes similarity scores, known as logits, for each image-text pair. These scores indicate how well 
each image corresponds to the text prompts. To interpret these scores more intuitively, we convert them 
into probabilities, which indicate the likelihood that an image aligns with any of the given prompts:

def get_probabilities(
    model: CLIPModel, inputs: dict) -> torch.Tensor:
"""
Computes the probabilities using the CLIP model.
"""
    outputs = model(**inputs)
    logits = outputs.logits_per_image
    # Define temperature - higher temperature will make the 
distribution more uniform.
    T = 10
    # Apply temperature to the logits
    temp_adjusted_logits = logits / T
    probs = torch.nn.functional.softmax(
        temp_adjusted_logits, dim=1)
    return probs

Lastly, we display the images along with their scores, visually representing how well each image adheres 
to the provided prompts:

def display_images_with_scores(
    images: List[Image.Image], scores: torch.Tensor) -> None:
"""
Displays the images alongside their scores.
"""
    # Set print options for readability
    torch.set_printoptions(precision=2, sci_mode=False)

    for i, image in enumerate(images):
        print(f"Image {i + 1}:")
        display(image)
        print(f"Scores: {scores[i, :]}")
        print()
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With everything detailed, let’s execute the pipeline as follows:

# Load CLIP model
model, processor = load_model_and_processor(CLIP_REPO)
# Process image and text inputs together
inputs = process_inputs(processor, prompts, images)
# Extract the probabilities
probs = get_probabilities(model, inputs)
# Display each image with corresponding scores
display_images_with_scores(images, probs)

We now have scores for each of our synthetic images that quantify the fidelity of the synthetic image 
to the text provided, based on the CLIP model, which interprets both image and text data as one 
combined mathematical representation (or geometric space) and can measure their similarity.

Figure 2.2: CLIP scores

For our “friendly lion,” we computed scores of 83% and 17% for each prompt, which we can interpret 
as an 83% likelihood that the image aligns with the first prompt.

In practical scenarios, this metric can be applied across various domains:

•	 Content moderation: Automatically moderating or flagging inappropriate content by comparing 
images to a set of predefined descriptive prompts

•	 Image retrieval: Facilitating refined image searches by matching textual queries to a vast 
database of images, hence narrowing down the search to the most relevant visuals

•	 Image captioning: Assisting in generating accurate captions for images by identifying the most 
relevant descriptive prompts

•	 Advertising: Tailoring advertisements based on the content of images on a web page to enhance 
user engagement

•	 Accessibility: Enhancing accessibility features by providing accurate descriptions of images 
for individuals with visual impairments
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This evaluation method not only speeds up processes that would otherwise require manual inspection 
but also lends itself to many applications that could benefit from a deeper understanding and contextual 
analysis of visual data. We will revisit the CLIP evaluation in Chapter 4, where we simulate a real-
world scenario to determine the quality and appropriateness of automatically generated captions for 
a set of product images.

Summary
This chapter explored the theoretical underpinnings and real-world applications of leading GAI 
techniques, including GANs, diffusion models, and transformers. We examined their unique strengths, 
including GANs’ ability to synthesize highly realistic images, diffusion models’ elegant image generation 
process, and transformers’ exceptional language generation capabilities.

Using a cloud-based Python environment, we implemented these models to generate compelling 
images and evaluated their output quality using CLIP. We analyzed how techniques such as progressive 
growing and classifier guidance enhanced output fidelity over time. We also considered societal 
impacts, urging developers to address potential harm through transparency and ethical practices.

Generative methods have unlocked remarkable creative potential, but thoughtful oversight is critical as 
capabilities advance. We can guide these technologies toward broadly beneficial outcomes by grounding 
ourselves in core methodologies, scrutinizing their limitations, and considering downstream uses. 
The path ahead will require continued research and ethical reflection to unlock AI’s creative promise 
while mitigating risks.
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3
Tracing the Foundations of 

Natural Language Processing and 
the Impact of the Transformer

The transformer architecture is a key advancement that underpins most modern generative language 
models. Since its introduction in 2017, it has become a fundamental part of natural language 
processing (NLP), enabling models such as Generative Pre-trained Transformer 4 (GPT-4) and 
Claude to advance text generation capabilities significantly. A deep understanding of the transformer 
architecture is crucial for grasping the mechanics of modern large language models (LLMs).

In the previous chapter, we explored generative modeling techniques, including generative adversarial 
networks (GANs), diffusion models, and autoregressive (AR) transformers. We discussed how Transformers 
can be leveraged to generate images from text. However, transformers are more than just one generative 
approach among many; they form the basis for nearly all state-of-the-art generative language models.

In this chapter, we’ll cover the evolution of NLP that ultimately led to the advent of the transformer 
architecture. We cannot cover all the critical steps forward, but we will attempt to cover major 
milestones, starting with early linguistic analysis techniques and statistical language modeling, followed 
by advancements in recurrent neural networks (RNNs) and convolutional neural networks (CNNs) 
that highlight the potential of deep learning (DL) for NLP. Our main objective will be to introduce 
the transformer—its basis in DL, its self-attention architecture, and its rapid evolution, which has led 
to LLMs and this phenomenon we call generative AI (GenAI).

Understanding the origins and mechanics of the transformer architecture is important for recognizing 
its groundbreaking impact. The principles and modeling capabilities introduced by transformers are 
carried forward by all modern language models built upon this framework. We will build our intuition 
for Transformers through historical context and hands-on implementation, as this foundational 
understanding is key to understanding the future of GenAI.
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Early approaches in NLP
Before the widespread use of neural networks (NNs) in language processing, NLP was largely grounded 
in methods that counted words. Two particularly notable techniques were count vectors and Term 
Frequency-Inverse Document Frequency (TF-IDF). In essence, count vectors tallied up how often 
each word appeared in a document. Building on this, Dadgar et al. applied the TF-IDF algorithm 
(historically used for information retrieval) to text classification in 2016. This method assigned 
weights to words based on their significance in one document relative to their occurrence across a 
collection of documents. These count-based methods were successful for tasks such as searching and 
categorizing. However, they presented a key limitation in that they could not capture the semantic 
relationships between words, meaning they could not interpret the nuanced meanings of words in 
context. This challenge paved the way for exploring NNs, offering a deeper and more nuanced way 
to understand and represent text.

Advent of neural language models

In 2003, Yoshua Bengio’s team at the University of Montreal introduced the Neural Network Language 
Model (NNLM), a novel approach to language technology. The NNLM was designed to predict the 
next word in a sequence based on prior words using a particular type of neural network (NN). The 
design prominently featured hidden layers that learned word embeddings, which are compact vector 
representations capturing the core semantic meanings of words. This aspect was absent in count-
based approaches. However, the NNLM was still limited in its ability to interpret longer sequences 
and handle large vocabularies. Despite these limitations, the NNLM sparked widespread exploration 
of NNs in language modeling.

The introduction of the NNLM highlighted the potential of NNs in language processing, particularly 
using word embeddings. Yet, its limitations with long sequences and large vocabulary signaled the 
need for further research.

Distributed representations

Following the inception of the NNLM, NLP research was propelled toward crafting high-quality word 
vector representations. These representations could be initially learned from extensive sets of unlabeled 
text data and later applied to downstream models for various tasks. The period saw the emergence 
of two prominent methods: Word2Vec (introduced by Mikolov et al., 2013) and Global Vectors 
(GloVe, introduced by Pennington et al., 2014). These methods applied distributed representation 
to craft high-quality word vector representations.  Distributed representation portrays items such as 
words not as unique identifiers but as sets of continuous values or vectors. In these vectors, each value 
corresponds to a specific feature or characteristic of the item. Unlike traditional representations, where 
each item has a unique symbol, distributed representations allow these items to share features with 
others, enabling a more intelligent capture of underlying patterns in the data.
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Let us elucidate this concept a bit further. Suppose we represent words based on two features: Formality 
and Positivity. We might have vectors such as the following:

Formal: [1, 0]

Happy: [0, 1]

Cheerful: [0, 1]

In this example, each element in the vector corresponds to one of these features. In the vector for 
Formal, the 1 element under Formality indicates that the word is formal, while the 0 element under 
Positivity indicates neutrality in terms of positivity. Similarly, for Happy and Cheerful, the 1 
element under Positivity indicates that these words have a positive connotation. This way, distributed 
representation captures the essence of words through vectors, allowing for shared features among 
different words to understand underlying patterns in data.

Word2Vec employs a relatively straightforward approach where NNs are used to predict the surrounding 
words for each target word in a dataset. Through this process, the NN ascertains values or “weights” 
for each target word. These weights form a vector for each word in a continuous vector space—a 
mathematical space wherein each point represents a possible value a vector can take. In the context of 
NLP, each dimension of this space corresponds to a feature, and the position of a word in this space 
captures its semantic or linguistic relationships to other words.

These vectors form a feature-based representation—a type of representation where each dimension 
represents a different feature that contributes to the word’s meaning. Unlike a symbolic representation, 
where each word is represented as a unique symbol, a feature-based representation captures the 
semantic essence of words in terms of shared features.

On the other hand, GloVe adopts a different approach. It analyzes the global co-occurrence statistics—a 
count of how often words appear together in a large text corpus. GloVe learns vector representations 
that capture the relationships between words by analyzing these counts across the entire corpus. This 
method also results in a distributed representation of words in a continuous vector space, capturing 
semantic similarity—a measure of the degree to which two words are similar in meaning. In a 
continuous vector space, we can think about semantic similarity as the simple geometric proximity 
of vectors representing words.

To further illustrate, suppose we have a tiny corpus of text containing the following sentences:

“Coffee is hot.”

“Ice cream is cold.”
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From this corpus, GloVe would notice that “coffee” co-occurs with “hot” and “ice cream” co-occurs with 
“cold.” Through its optimization process, it would aim to create vectors for these words in a way that 
reflects these relationships. In this oversimplified example, GloVe might produce a vector such as this:

Coffee: [1, 0]

Hot: [0.9, 0]

Ice Cream: [0, 1]

Cold: [0, 0.9]

Here, the closeness of the vectors for “coffee” and “hot” (and, similarly, “ice cream” and “cold”) in this 
space reflects the co-occurrence relationships observed in the corpus. The vector difference between 
“coffee” and “hot” might resemble the vector difference between “ice cream” and “cold,” capturing the 
contrasting temperature relationships in a geometric way within the vector space.

Both Word2Vec and GloVe excel at encapsulating relevant semantic information about words to 
represent an efficient encoding—a compact way of representing information that captures the essential 
features necessary for a task while reducing the dimensionality and complexity of the data.

These methodologies in creating meaningful vector representations served as a step toward the adoption 
of transfer learning in NLP. The vectors provide a shared semantic foundation that facilitates the 
transfer of learned relationships across varying tasks.

Transfer Learning

GloVe and other methods of deriving distributed representations paved the way for transfer learning 
in NLP. By creating rich vector representations of words that encapsulate semantic relationships, 
these methods provided a foundational understanding of text. The vectors serve as a shared base of 
knowledge that can be applied to different tasks. When a model, initially trained on one task, is utilized 
for another, the pre-learned vector representations aid in preserving the semantic understanding, 
thereby reducing the data or training needed for the new task. This practice of transferring acquired 
knowledge has become fundamental for efficiently addressing a range of NLP tasks.

Consider a model trained to understand sentiments (positive or negative) in movie reviews. Through 
training, this model has learned distributed representations of words, capturing sentiment-related 
nuances. Now, suppose there is a new task: understanding sentiments in product reviews. Instead of 
training a new model from the beginning, transfer learning allows us to use the distributed representations 
from the movie review task to initiate training for the product review task. This could lead to quicker 
training and better performance, especially with limited data for the product review task.

The effectiveness of transfer learning, bolstered by distributed representations from methods such as 
GloVe, highlighted the potential of leveraging pre-existing knowledge for new tasks. It was a precursor 
to the integration of NNs in NLP, highlighting the benefits of utilizing learned representations across 
tasks. The advent of NNs in NLP brought about models capable of learning even richer representations, 
further amplifying the impact and scope of transfer learning.
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Advent of NNs in NLP

The advent of NNs in NLP marked a monumental shift in the field’s capability to understand and 
process language. Building upon the groundwork laid by methodologies such as Word2Vec, GloVe, 
and the practice of transfer learning, NNs introduced a higher level of abstraction and learning 
capacity. Unlike previous methods that often relied on hand-crafted features, NNs could automatically 
learn intricate patterns and relationships from data. This ability to learn from data propelled NLP 
into a new era where models could achieve unprecedented levels of performance across a myriad of 
language-related tasks. The emergence of architectures such as CNNs and RNNs, followed by the 
revolutionary transformer architecture, showcased the remarkable versatility and efficacy of NNs in 
tackling complex NLP challenges. This transition not only accelerated the pace of innovation but also 
expanded the horizon of what could be achieved in understanding human language computationally.

Language modeling with RNNs

Despite how well these distributed word vectors excelled at encoding local semantic relationships, 
modeling long-range dependencies would require a more sophisticated network architecture. This 
led to the use of RNNs. RNNs (originally introduced by Elman in 1990) are a type of NN architecture 
that processes data sequences by iterating through each element of the sequence while maintaining 
a dynamic internal state that captures information about the previous elements. Unlike traditional 
feedforward networks (FNNs) that processed each input independently, RNNs introduced iterations 
that allowed information to be passed from one step in the sequence to the next, enabling them to 
capture temporal dependencies in data. The iterative processing and dynamic updating in NNs enable 
them to learn and represent relationships within the text. These networks can capture contextual 
connections and interdependencies across sentences or even entire documents.

However, standard RNNs had technical limitations when dealing with long sequences. This led to 
the development of long short-term memory (LSTM) networks. LSTMs were first introduced by 
Hochreiter and Schmidhuber in 1997. They were a special class of RNNs designed to address the 
vanishing gradient problem, which is the challenge where the network cannot learn from earlier 
parts of a sequence as the sequence gets longer. LSTMs applied a unique gating architecture to control 
the flow of information within the network, enabling them to maintain and access information over 
long sequences without suffering from the vanishing gradient problem.

The name “long short-term memory” refers to the network’s ability to keep track of information over 
both short and long sequences of data:

•	 Short-term: LSTMs can remember recent information, which is useful for understanding 
the current context. For example, in language modeling, knowing the last few words can be 
crucial for predicting the next word. Consider a phrase such as, “The cat, which already ate a 
lot, was not hungry.” As the LSTM processes the text, when it reaches the word “not,” the recent 
information that the cat “ate a lot” is crucial to predict the next word, “hungry,” accurately.
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•	 Long-term: Unlike standard RNNs, LSTMs are also capable of retaining information from many 
steps back in the sequence, which is particularly useful for long-range dependencies, where a 
piece of information early in a sentence could be important for understanding a word much 
later in the sequence. In the same phrase, the information that “The cat” is the subject of the 
sentence is introduced early on. This information is crucial later to understand who “was not 
hungry” as it processes the later part of the sentence.

The M or memory in LSTMs is maintained through a unique architecture that employs three gating 
mechanisms—input, output, and forget gates. These gates control the flow of information within the 
network, deciding what information should be kept, discarded, or used at each step in the sequence, 
enabling LSTMs to maintain and access information over long sequences. Effectively, these gates and 
the network state allowed LTSMs to carry the “memory” across time steps, ensuring that valuable 
information was retained throughout the processing of the sequence.

Ultimately, LSTMs obtained state-of-the-art results on many language modeling and text classification 
benchmarks. They became the dominant NN architecture for NLP tasks due to their ability to capture 
short- and long-range contextual relationships.

The success of LSTMs demonstrated the potential of neural architectures in capturing the complex 
relationships inherent in language, significantly advancing the field of NLP. However, the continuous 
pursuit of more efficient and effective models led the community toward exploring other NN architectures.

Rise of CNNs

Around 2014, the NLP domain witnessed a rise in the popularity of CNNs for tackling NLP tasks, a notable 
shift led by Yoon Kim. CNNs (originally brought forward by LeCun et al. for image recognition) operate 
based on convolutional layers that scan the input by moving a filter (or kernel) across the input data, at 
each position calculating the dot product of the filter’s weights and the input data. In NLP, these layers 
work over local n-gram windows (consecutive sequences of n words) to identify patterns or features, such 
as specific sequences of words or characters in the text. Employing convolutional layers over local n-gram 
windows, CNNs scan and analyze the data to detect initial patterns or features. Following this, pooling 
layers are used to reduce the dimensionality of the data, which helps in both reducing computational 
complexity and focusing on the most salient features identified by the convolutional layers.

Combining convolutional and pooling layers, CNNs can extract hierarchical features. These features 
represent information at different levels of abstraction by combining simpler, lower-level features 
to form more complex, higher-level features. In NLP, this process might start with detecting basic 
patterns such as common word pairs or phrases in the initial layers, progressing to recognizing more 
abstract concepts such as semantic relationships in the higher layers.

For comparison, we again consider a scenario where a CNN is employed to analyze and categorize 
customer reviews into positive, negative, or neutral sentiments:

•	 Lower-level features (initial layers): The CNN might identify basic patterns such as common 
word pairs or phrases in the initial layers. For instance, it might recognize phrases such as “great 
service,” “terrible experience,” or “not happy.”
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•	 Intermediate-level features (middle layers): As data progresses through the network, middle 
layers might start recognizing more complex patterns, such as negations (“not good”) or 
contrasts (“good but expensive”).

•	 Higher-level features (later layers): The CNN could identify abstract concepts such as overall 
sentiment in the later layers. For instance, it might deduce a positive sentiment from phrases 
such as “excellent service” or “loved the ambiance” and a negative sentiment from phrases such 
as “worst experience” or “terrible food.”

In this way, CNNs inherently learn higher-level abstract representations of text. Although they lack 
the sequential processing characteristic of RNNs, they offer a computational advantage due to their 
inherent parallelism or ability to process multiple parts of the data simultaneously. Unlike RNNs, 
which process sequences iteratively and require the previous step to be completed before proceeding 
to the next, CNNs can process various parts of the input data in parallel, significantly speeding up 
training times.

CNNs, while efficient, have a limitation in their convolution operation, which only processes local 
data from smaller or nearby regions, thereby missing relationships across more significant portions 
of the entire input data, referred to as global information. This gave rise to attention-augmented 
convolutional networks that integrate self-attention with convolutions to address this limitation. 
Self-attention, initially used in sequence and generative modeling, was adapted for visual tasks such 
as image classification, enabling the network to process and capture relationships across the entire 
input data. However, attention augmentation, which combines convolutions and self-attention, yielded 
the best results. This method retained the computational efficiency of CNNs and captured global 
information, marking an advancement in image classification and object detection tasks. We will 
discuss self-attention in detail later as it became a critical component of the transformer.

The ability of CNNs to process multiple parts of data simultaneously marked a significant advancement 
in computational efficiency, paving the way for further innovations in NN architectures for NLP. As 
the field progressed, a pivotal shift occurred with the advent of attention-augmented NNs, introducing 
a new paradigm in how models handle sequential data.

The emergence of the Transformer in advanced language 
models
In 2017, inspired by the capabilities of CNNs and the innovative application of attention mechanisms, 
Vaswani et al. introduced the transformer architecture in the seminal paper Attention is All You Need. 
The original transformer applied several novel methods, particularly emphasizing the instrumental 
impact of attention. It employed a self-attention mechanism, allowing each element in the input 
sequence to focus on distinct parts of the sequence, capturing dependencies regardless of their positions 
in a structured manner. The term “self ” in “self-attention” refers to how the attention mechanism is 
applied to the input sequence itself, meaning each element in the sequence is compared to every other 
element to determine its attention scores.
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To truly appreciate how the transformer architecture works, we can describe how the components in 
its architecture play a role in handling a particular task. Suppose we need our transformer to translate 
the English sentence “Hello, how are you?” into French: “Bonjour, comment ça va?” Let us walk through 
this step by step to examine and elucidate how the transformer might accomplish this task. For now, 
we will describe each step in detail and later implement the full architecture using Python.

Components of the transformer architecture

Before diving into how the transformer model fulfills our translation task, we need to understand the 
steps involved. The complete architecture is quite dense, so we will break it down into small, logical, 
and digestible components.

First, we discuss the two components central to the architectural design of the transformer model: the 
encoder and decoder stacks. We will also explain how data flows within these layer stacks, including 
the concept of tokens, and how relationships between tokens are captured and refined using critical 
techniques such as self-attention and FFNs.

Then, we transition into the training process of the transformer model. Here, we review fundamental 
concepts such as batches, masking, the training loop, data preparation, optimizer selection, and 
strategies to improve performance. We will explain how the transformer optimizes performance using 
a loss function, which is crucial in shaping how the model learns to translate.

Following the training process, we discuss model inference, which is how our trained model generates 
translations. This section points out the order in which individual model components operate during 
translation and emphasizes the importance of each step.

As discussed, central to the transformer are two vital components, often called the encoder stack and 
the decoder stack.

Encoder and decoder stacks

In the context of the transformer model, stacks reference a hierarchical arrangement of layers. Each 
layer in this context is, in fact, an NN layer like the layers we come across in classical DL models. 
While a layer is a level in the model where specific computational operations occur, a stack refers to 
multiple such layers arranged consecutively.

Encoder stack

Consider our example sentence “Hello, how are you?”. We first convert it into tokens. Each token 
typically represents a word. In the case of our example sentence, tokenization would break it down 
into separate tokens, resulting in the following:

[“Hello”, “,”, “how”, “are”, “you”, “?”]
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Here, each word or punctuation represents a distinct token. These tokens are then transformed into 
numerical representations, also known as embeddings. These embedding vectors capture the semantic 
meaning and context of the words, enabling the model to understand and process the input data 
effectively. The embeddings aid in capturing complex relationships and contexts from the original 
English input sentence through this series of transformations across layers.

This stack comprises multiple layers, where each layer applies self-attention and FFN computations 
on its input data (which we will describe in detail shortly). The embeddings iteratively capture 
complex relationships and context from the original English input sentence through this series of 
transformations across layers.

Decoder stack

Once the encoder completes its task, the output vectors—or the embeddings of the input sentence that 
hold its contextual information—are passed on to the decoder. Within the decoder stack, multiple 
layers work sequentially to generate a French translation from the embeddings.

The process begins by converting the first embedding into the French phrase “Bonjour.” The subsequent 
layer uses the following embedding and context from the previously generated words to predict the 
next word in the French sentence. This process is repeated through all the layers in the stack, each 
using input embeddings and generated words to define and refine the translation.

The decoder stack progressively builds (or decodes) the translated sentence through this iterative 
process, arriving at “Bonjour, comment ça va?”.

With an overall understanding of the encoder-decoder structure, our next step is unraveling the 
intricate operations within each stack. However, before delving into the self-attention mechanism 
and FFNs, there is one vital component we need to understand — positional encoding. Positional 
encoding is paramount to the transformer’s performance because it gives the transformer model a 
sense of the order of words, something subsequent operations in the stack lack.

Positional encoding

Every word in a sentence holds two types of information — its meaning and its role in the larger 
context of the sentence. The contextual role often stems from a word’s position in the arrangement 
of words. A sentence such as “Hello, how are you?” makes sense because the words are in a specific 
order. Change that to “Are you, how hello?” and the meaning becomes unclear.

Consequently, Vaswani et al. introduced positional encoding to ensure that the transformer encodes 
each word with additional data about its position in the sentence. Positional encodings are computed 
using a blend of sine and cosine functions across different frequencies, which generate a unique set 
of values for each position in a sequence. These values are then added to the original embeddings of 
the tokens, providing a way for the model to capture the order of words. These enriched embeddings 
are then ready to be processed by the self-attention mechanism in the subsequent layers of the 
transformer model.
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Self-attention mechanism

As each token of our input sentence “Hello, how are you?” passes through each layer of the encoder 
stack, it undergoes a transformation via the self-attention mechanism.

As the name suggests, the self-attention mechanism allows each token (word) to attend to (or focus 
on) other vital tokens to understand the full context within the sentence. Before encoding a particular 
word, this attention mechanism interprets the relationship between each word and the others in the 
sequence. It then assigns distinct attention scores to different words based on their relevance to the 
current word being processed.

Consider again our input sentence “Hello, how are you?”. When the self-attention mechanism is 
processing the last word, “you,” it does not just focus on “you.” Instead, it takes into consideration the 
entire sentence: it looks at “Hello,” glances over “how,” reflects on “are,” and, of course, focuses on “you.”

In doing so, it assigns various levels of attention to each word. You can visualize attention (Figure 3.1) 
as lines connecting “you” to every other word. The line to “Hello” might be thick, indicating a lot of 
attention, representing the influence of “Hello” on the encoding of “you.” The line connecting “you” 
and “how” might be thinner, suggesting less attention given to “how.” The lines to “are” and “you” 
would have other thicknesses based on how they help in providing context to “you”:

 

Figure 3.1: Self-attention mechanism

This way, when encoding “you,” a weighted mix of the entire sentence is considered, not just the single 
word. And these weights defining the mix are what we refer to as attention scores.

The self-attention mechanism is implemented through a few steps:

1.	 Initially, each input word is represented as a vector, which we obtain from the word embedding.

2.	 These vectors are then mapped to new vectors called query, key, and value vectors through 
learned transformations.

3.	 An attention score for each word is then computed by taking the dot product of the query 
vector of the word with the key vector of every other word, followed by a SoftMax operation 
(which we will describe later).

4.	 These scores indicate how much focus to place on other parts of the input sentence for each 
word as it is encoded.

5.	 Finally, a weighted sum of the value vectors is computed based on these scores to give us our 
final output vectors, or the self-attention outputs.
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It is important to note that this computation is done for each word in the sentence. This ensures a 
comprehensive understanding of the context in the sentence, considering multiple parts of the sentence 
at once. This concept set the transformer apart from nearly every model that came before it.

Instead of running the self-attention mechanism once (or “single-head” attention), the transformer 
replicates the self-attention mechanism multiple times in parallel. Each replica or head operates on 
the same input but has its own independent set of learned parameters to compute the attention scores. 
This allows each head to learn different contextual relationships between words. This parallel process 
is known as multi-head attention (MHA).

Imagine our sentence “Hello, how are you?” again. One head might concentrate on how “Hello” relates 
to “you,” whereas another head might focus more on how “how” relates to “you.” Each head has its 
own set of query, key, and value weights, further enabling them to specialize and learn different things. 
The outputs of these multiple heads are then concatenated and transformed to produce final values 
passed onto the next layer in the stack.

This multi-head approach allows the model to capture a wider range of information from the same 
input words. It is like having several perspectives on the same sentence, each providing unique insights.

So far, for our input sentence “Hello, how are you?”, we have converted each word into token representations, 
which are then contextualized using the MHA mechanism. Through parallel self-attention, our 
transformer can consider the full range of interactions between each word and every other word in the 
sentence. We now have a set of diverse and context-enriched word representations, each containing 
a textured understanding of a word’s role in the sentence. However, this contextual understanding 
contained within the attention mechanism is just one component of the information processing in 
our transformer model. Next comes another layer of interpretation through position-wise FFNs. The 
FFN will add further nuances to these representations, making them more informative and valuable 
for our translation task.

In the next section, we discuss a vital aspect of the transformer’s training sequence: masking. Specifically, 
the transformer applies causal (or look-ahead) masking during the decoder self-attention to ensure that 
each output token prediction depends only on previously generated tokens, not future unknown tokens.

Masking

The transformer applies two types of masking during training. The first is a preprocessing step to 
ensure input sentences are of the same length, which enables efficient batch computation. The second 
is look-ahead (or causal) masking, which allows the model to selectively ignore future tokens in a 
sequence. This type of masking occurs in the self-attention mechanism in the decoder and prevents 
the model from peeking ahead at future tokens in the sequence. For example, when translating the 
word “Hello” to French, look-ahead masking ensures that the model does not have access to the 
subsequent words “how,” “are,” or “you.” This way, the model learns to generate translations based on 
the current and preceding words, adhering to a natural progression in translation tasks, mimicking 
that of human translation.
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With a clearer understanding of how data is prepared and masked for training, we now transition to 
another significant aspect of the training process: hyperparameters. Unlike parameters learned from 
the data, hyperparameters are configurations set before training to control the model optimization 
process and guide the learning journey. The following section will explore various hyperparameters 
and their roles during training.

SoftMax

To understand the role of the FFN, we can describe its two primary components—linear transformations 
and an activation function:

•	 Linear transformations are essentially matrix multiplications. Think of them as tools that 
reshape or tweak the input data. In the FFN, these transformations occur twice, where two 
different weights (or matrices) are used.

•	 A rectified linear unit (ReLU) function is applied between these two transformations. The role 
of the ReLU function is to introduce non-linearity in the model. Simply put, the ReLU function 
allows the model to capture patterns within the input data that are not strictly proportional, 
i.e., non-linear, which is typical of natural language (NL) data.

The FFN is called position-wise because it treats each word in the sentence separately (position by 
position), regardless of the sequence. This contrasts with the self-attention mechanism, which considers 
the entire sequence at once.

So, let us attempt to visualize the process: Imagine our word “Hello” arriving here after going through 
the self-attention mechanism. It carries with it information about its own identity mixed with 
contextual references to “how,” “are,” and “you.” This integrated information resides within a vector 
that characterizes “Hello.”

When “Hello” enters the FFN, picture it as a tunnel with two gates. At the first gate (or linear layer), 
“Hello” is transformed by a matrix multiplication operation, changing its representation. Afterward, 
it encounters the ReLU function—which makes the representation non-linear.

After this, “Hello” passes through a second gate (another linear layer), emerging on the other side 
transformed yet again. The core identity of “Hello” remains but is now imbued with even more context, 
carefully calibrated and adjusted by the FFN.

Once the input passes through the gates, there is one additional step. The transformed vector still 
must be converted into a form that can be interpreted as a prediction for our final translation task.

This brings us to using the SoftMax function, the final transformation within the transformer’s decoder. 
After the vectors pass through the FFN, they are further processed through a final linear layer. The 
result is then fed into a SoftMax function.

SoftMax serves as a mechanism for converting the output of our model into a form that can be 
interpreted as probabilities. In essence, the SoftMax function will take the output from our final linear 
layer (which could be any set of real numbers) and transform it into a distribution of probabilities, 
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representing the likelihood of each word being the next word in our output sequence. For example, 
if our target vocabulary includes “Bonjour,” “Hola,” “Hello,” and “Hallo,” the SoftMax function will 
assign each of these words a probability, and the word with the highest probability will be chosen as 
the output translation for the word “Hello.” We can illustrate with this oversimplified representation 
of the output probabilities:

[ Bonjour: 0.4, Hola: 0.3, Hello: 0.2, Hallo: 0.1 ]

Figure 3.2 shows a more complete (albeit oversimplified) view of the flow of information through 
the architecture.

 

Figure 3.2: A simplified illustration of the transformer

Now that we’ve introduced the architectural components of the transformer, we are poised to understand 
how its components work together.

Sequence-to-sequence learning

The components of a transformer come together to learn from data using a mechanism known as 
sequence-to-sequence (Seq2Seq) learning, a subset of supervised learning (SL). Recall that SL is a 
technique that uses labeled data to train models to predict outcomes accurately. In Seq2Seq learning, 
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we provide the transformer with training data that comprises examples of input and corresponding 
correct output, which, in this case, are correct translations. Seq2Seq learning is particularly well 
suited for tasks such as machine translation where both the input and output are sequences of words.

The very first step in the learning process is to convert each word in the phrase into tokens, which 
are then transformed into numerical embeddings. These embeddings carry the semantic essence of 
each word. Positional encodings are computed and added to these embeddings to imbue them with 
positional awareness.

As these enriched embeddings traverse through the encoder stack, within each layer, the self-attention 
mechanism refines the embeddings by aggregating contextual information from the entire phrase. 
Following self-attention, each word’s embedding undergoes further transformation in the position-
wise FFNs, adjusting the embeddings to capture even more complex relationships.

Upon exiting the encoder, the embeddings now hold a rich mixture of semantic and contextual 
information. They are passed onto the decoder stack, which aims to translate the phrase into another 
language (that is, the target sequence). As with the encoder, each layer in the decoder also employs 
self-attention and position-wise FFNs, but with an additional layer of cross-attention that interacts 
with the encoder’s outputs. This interaction helps align the input and output phrases, a crucial aspect 
of translation.

As the embeddings move through the decoder layers, they are progressively refined to represent the 
translated phrase that the model will predict. The final layer of the decoder processes the embeddings 
through a linear transformation and SoftMax function to produce a probability distribution over 
the target vocabulary. This distribution defines the model’s predicted likelihood for each potential 
next token at each step. The decoder then samples from this distribution to select the token with the 
highest predicted probability as its next output. By iteratively sampling the most likely next tokens 
according to the predicted distributions, the decoder can autoregressively generate the full translated 
output sequence token by token.

However, for the transformer to reliably sample from the predicted next-token distributions to generate 
high-quality translations, it must progressively learn by iterating over thousands of examples of input-
output pairs. In the next section, we explore model training in further detail.

Model training

As discussed, the primary goal of the training phase is to refine the model’s parameters to facilitate 
accurate translation from one language to another. But what does the refinement of parameters entail, 
and why is it pivotal?

Parameters are internal variables that the model utilizes to generate translations. Initially, these 
parameters are assigned random values, which are adjusted with each training iteration. Again, 
the model is provided with training data that comprises thousands of examples of input data and 
corresponding correct output, which, in this case, is the correct translation. It then compares its 
predicted output tokens to the correct (or actual) target sequences using an error (or loss) function.



The emergence of the Transformer in advanced language models 53

Based on the loss, the model updates its parameters, gradually improving its ability to choose the 
correct item in the sequence at each step of decoding. This slowly refines the probability distributions.

Over thousands of training iterations, the model learns associations between source and target languages. 
Eventually, it acquires enough knowledge to decode coherent, human-like translations from unseen 
inputs by relying on patterns discovered during training. Therefore, training drives the model’s ability 
to produce accurate target sequences from the predicted vocabulary distributions.

After training on sufficient translation pairs, the transformer reaches reliable translation performance. 
The trained model can then take in new input sequences and output translated sequences by generalizing 
to that new data.

For instance, with our example sentence “Hello, how are you?” and its French translation “Bonjour, 
comment ça va?”, the English sentence serves as the input, and the French sentence serves as the target 
output. The training data comprises many translated pairs. Each time the model processes a batch of 
data, it generates predictions for the translation, compares them to the actual target translations, and 
then adjusts its parameters to reduce the discrepancy (or minimize the loss) between the predicted 
and actual translations. This is repeated with numerous batches of data until the model’s translations 
are sufficiently accurate.

Hyperparameters

Again, unlike parameters, which the model learns from the training data, hyperparameters are preset 
configurations that govern the training process and the structure of the model. They are a crucial part 
of setting up a successful training run.

Some key hyperparameters in the context of transformer models include the following:

•	 Learning rate: This value determines the step size at which the optimizer updates the model 
parameters. A higher learning rate could speed up the training but may overshoot the optimal 
solution. A lower learning rate may result in a more precise convergence to the optimal solution, 
albeit at the cost of longer training time. We will discuss optimizers in detail in the next section.

•	 Batch size: The number of data examples processed in a single batch affects the computational 
accuracy and the memory requirements during training.

•	 Model dimensions: The model’s size (for example, the number of layers in the encoder and 
decoder, the dimensionality of the embeddings, and so on) is a crucial hyperparameter that 
affects the model’s capacity to learn and generalize.

•	 Optimizer settings: Choosing an optimizer and its settings, such as the initial learning rate, 
beta values in the Adam optimizer, and so on, are also considered hyperparameters. Again, we 
will explore optimizers further in the next section.

•	 Regularization terms: Regularization terms such as dropout rate are hyperparameters that help 
prevent overfitting by adding some form of randomness or constraint to the training process.
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Selecting the proper values for hyperparameters is crucial for the training process as it significantly 
impacts the model’s performance and efficiency. It often involves hyperparameter tuning, which involves 
experimentation and refining to find values for hyperparameters that yield reliable performance for 
a given task. Hyperparameter tuning can be somewhat of an art and a science. We will touch on this 
more in later chapters.

With a high-level grasp of hyperparameters, we will move on to the choice of optimizer, which is 
pivotal in controlling how efficiently the model learns from the training data.

Choice of optimizer

The optimizer is a fundamental component of the training process and is responsible for updating 
the model’s parameters to minimize error. Different optimizers have different strategies for navigating 
the parameter space to find a set of parameter values that yield low loss (or less error). The choice of 
optimizer can significantly impact the speed and quality of the training process.

In the context of transformer models, the Adam optimizer is often the optimizer of choice due to its 
efficiency and empirical success in training deep networks. Adam adapts learning rates during training. 
For simplicity, we will not explore all the possible optimizers but instead describe their purpose.

The optimizer’s primary task is to fine-tune the model’s parameters to reduce translation errors, 
progressively guiding the model toward the desired level of performance. However, an over-zealous 
optimization could lead the model to memorize the training data, failing to generalize well to unseen 
data. To mitigate this, we employ regularization techniques.

In the next section, we will explore regularization—a technique that works with optimization to ensure 
that while the model learns to minimize translation errors, it also remains adaptable to new, unseen data.

Regularization

Regularization techniques are employed to deter the model from memorizing the training data (a 
phenomenon known as overfitting) and to promote better performance on new, unseen data. Overfitting 
arises when the model, to minimize the error, learns the training data to such an extent that it captures 
useless patterns (or noise) along with the actual patterns. This over-precision in learning the training 
data leads to a decline in performance when the model is exposed to new data.

Let us revisit our simple scenario where we train a model to translate English greetings to French 
greetings using a dataset that includes the word “Hello” and its translation “Bonjour.” If the model 
is overfitting, it may memorize the exact phrases from the training data without understanding the 
broader translation pattern.

In an overfit scenario, suppose the model learns to translate “Hello” to “Bonjour” with a probability 
of 1.0 because that is what it encountered most often in the training data. When presented with new, 
unseen data, it may encounter variations it has not seen before, such as “Hi,” which should also translate 
to “Bonjour.” However, due to overfitting, the model might fail to generalize from “Hello” to “Hi” as 
it is overly focused on the exact mappings it saw during training.
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Several regularization techniques can mitigate the overfitting problem. These techniques apply 
certain constraints on the model’s parameters during training, encouraging the model to learn a more 
generalized representation of the data rather than memorizing the training dataset.

Here are some standard regularization techniques used in the context of transformer models:

•	 Dropout: In the context of NN-based models such as the transformer, the term “neurons” 
refers to individual elements within the model that work together to learn from the data and 
make predictions. Each neuron learns specific aspects or features from the data, enabling the 
model to understand and translate text. During training, dropout randomly deactivates or 
“drops out” a fraction of these neurons, temporarily removing them from the network. This 
random deactivation encourages the model to spread its learning across many neurons rather 
than relying too heavily on a few. By doing so, dropout helps the model to better generalize its 
learning to unseen data rather than merely memorizing the training data (that is, overfitting).

•	 Layer normalization: Layer normalization is a technique that normalizes the activations of neurons 
in a layer for each training example rather than across a batch of examples. This normalization 
helps stabilize the training process and acts as a form of regularization, preventing overfitting.

•	 L1 or L2 regularization: L1 regularization, also known as Lasso, adds a penalty equal to the 
absolute magnitude of coefficients, promoting parameter sparsity. L2 regularization, or Ridge, 
adds a penalty based on the square of the coefficients, discouraging large values to prevent 
overfitting. Although these techniques help in controlling model complexity and enhancing 
generalization, they were not part of the transformer’s initial design.

By employing these regularization techniques, the model is guided toward learning more generalized 
patterns in the data, which improves its ability to perform well on unseen data, thus making the model 
more reliable and robust in translating new text inputs.

Throughout the training process, we have mentioned the loss function and discussed how the optimizer 
leverages it to adjust the model’s parameters, aiming to minimize prediction error. The loss function 
quantifies the model’s performance. We discussed how regularization penalizes the loss function to 
prevent overfitting, encouraging the model to learn simpler, more generalizable patterns. In the next 
section, we look closer at the nuanced role of the loss function itself.

Loss function

The loss function is vital in training the transformer model, quantifying the differences between 
the model’s predictions and the actual data. In language translation, this error is measured between 
generated and actual translations in the training dataset. A common choice for this task is cross-
entropy loss, which measures the difference between the model’s predicted probability distribution 
across the target vocabulary and the actual distribution, where the truth has a probability of 1 for the 
correct word and 0 for the rest.
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The transformer often employs a variant known as label-smoothed cross-entropy loss.  Label smoothing 
adjusts the target probability distribution during training, slightly lowering the probability for the correct 
class and increasing the probability for all other classes, which helps prevent the model from becoming 
too confident in its predictions. For instance, with a target vocabulary comprising “Bonjour,” “Hola,” 
“Hello,” and “Hallo,” and assuming “Bonjour” is the correct translation, a standard cross-entropy loss 
would aim for the probability distribution of Bonjour: 1.0, Hola: 0.0, Hello: 0.0, Hallo: 
0.0. However, the label-smoothed cross-entropy loss would slightly adjust these probabilities, as follows:

[ “Bonjour”: 0.925, “Hola”: 0.025, “Hello”: 0.025, “Hallo”: 0.025 ]

The smoothing reduces the model’s confidence and promotes better generalization to unseen data. 
With a clearer understanding of the loss function’s role, we can move on to the inference phase, where 
the trained model generates translations for new, unseen data.

Inference

Having traversed the training landscape, our trained model is now adept with optimized parameters to 
tackle the translation task. In the inference stage, these learned parameters are employed to translate new, 
unseen text. We will continue with our example phrase “Hello, how are you?” to elucidate this process.

The inference stage is the practical application of the trained model on new data. The trained parameters, 
refined after numerous iterations during training, are now used to translate text from one language 
to another. The inference steps can be described as follows:

1.	 Input preparation: Initially, our phrase “Hello, how are you?” is tokenized and encoded into 
a format that the model can process, akin to the preparation steps in the training phase.

2.	 Passing through the model: The encoded input is then propagated through the model. As it 
navigates through the encoder and decoder stacks, the trained parameters guide the transformation 
of the input data, inching closer to accurate translations at each step.

3.	 Output generation: At the culmination of the decoder stack, the model generates a probability 
distribution across the target vocabulary for each word in the input text. For the word “Hello,” 
a probability distribution is formed over the target vocabulary, which, in our case, comprises 
French words. The word with the highest probability is selected as the translation. This process is 
replicated for each word in the phrase, rendering the translated output “Bonjour, comment ça va?”.

Now that we understand how the model produces the final output, we can implement a transformer 
model step by step to solidify the concepts we have discussed. However, before we dive into the code, 
we can briefly give a synopsis of the end-to-end architecture flow:

1.	 Input tokenization: The initial English phrase “Hello, how are you?” is tokenized into smaller 
units such as “Hello,” “,,” “how,” and so on.

2.	 Embeddings: These tokens are then mapped to continuous vector representations through 
an embedding layer.

3.	 Positional encoding: To preserve the order of the sequence, positional encodings are added 
to the embeddings.
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4.	 Encoder self-attention: The embedded input sequence navigates through the encoder’s 
sequence of self-attention layers. Here, each word gauges the relevance of every other word to 
comprehend the full context.

5.	 FFN: The representations are subsequently refined by position-wise FFNs within each encoder layer.

6.	 Encoder output: The encoder renders contextual representations capturing the essence of the 
input sequence.

7.	 Decoder attention: Incrementally, the decoder crafts the output sequence, employing self-
attention solely on preceding words to maintain the sequence order.

8.	 Encoder-decoder attention: The decoder evaluates the encoder’s output, centering on pertinent 
input context while generating each word in the output sequence.

9.	 Output layers: The decoder feeds its output to the linear and SoftMax layers to produce 
“Bonjour, comment ça va?

At the end of this chapter, we will adapt a best-in-class implementation of the original transformer 
(Huang et al., 2022) into a minimal example that could later be trained on various downstream tasks. 
This will serve as a theoretical exercise to further solidify our understanding. In practice, we would 
rely on pre-trained or foundation models, which we will learn to implement in later chapters.

However, before we begin our practice project, we can trace its impact on the current landscape of 
GenAI. We follow the trajectory of early applications of the architecture (for example, Bidirectional 
Encoded Representations from Transformers (BERT)) through to the first GPT.

Evolving language models – the AR Transformer and its 
role in GenAI
In Chapter 2, we reviewed some of the generative paradigms that apply a transformer-based approach. 
Here, we trace the evolution of Transformers more closely, outlining some of the most impactful 
transformer-based language models from the initial transformer in 2017 to more recent state-of-the-
art models that demonstrate the scalability, versatility, and societal considerations involved in this 
fast-moving domain of AI (as illustrated in Figure 3.3):

Figure 3.3: From the original transformer to GPT-4
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•	 2017 – Transformer: The transformer model, introduced by Vaswani et al., was a paradigm shift 
in NLP, featuring self-attention layers that could process entire sequences of data in parallel. This 
architecture enabled the model to evaluate the importance of each word in a sentence relative 
to all other words, thereby enhancing the model’s ability to capture the context.

•	 2018 – BERT: Google’s BERT model innovated on the transformer architecture by utilizing a 
bidirectional context in its encoder layers during pre-training. It was one of the first models to 
understand the context of a word based on its entire sentence, both left and right, significantly 
improving performance on a wide range of NLP tasks, especially those requiring a deep 
understanding of context.

•	 2018 – GPT-1: OpenAI’s GPT-1 model was a milestone in NLP, adopting a generative pre-trained 
approach with a transformer’s decoder-only model. It was pre-trained on a diverse corpus of 
text data and fine-tuned for various tasks, using a unidirectional approach that generated text 
sequentially from left to right, which was particularly suited for generative text applications.

•	 2019 – GPT-2: GPT-2 built upon the foundation laid by GPT-1, maintaining its decoder-only 
architecture but significantly expanding its scale in terms of dataset and model size. This allowed 
GPT-2 to generate text that was more coherent and contextually relevant across a broader range 
of topics, demonstrating the power of scaling up transformer models.

•	 2020 – GPT-3: OpenAI’s GPT-3 pushed the boundaries of scale in transformer models to 175 billion 
parameters, enabling a wide range of tasks to be performed with minimal input, often with zero-
shot learning (ZSL) or few-shot learning (FSL). This showed that Transformers could generalize 
across tasks and data types, often without the need for extensive task-specific data or fine-tuning.

•	 2021 – InstructGPT: An optimized variant of GPT-3, InstructGPT was fine-tuned specifically 
to follow user instructions and generate aligned responses, incorporating feedback loops that 
emphasized safety and relevance in its outputs. This represented a focus on creating AI models 
that could more accurately interpret and respond to human prompts.

•	 2023 – GPT-4: GPT-4 was an evolution of OpenAI’s transformer models into the multimodal 
space, capable of understanding and generating content based on both text and images. This 
model aimed to produce safer and more contextually nuanced responses, showcasing a significant 
advancement in the model’s ability to handle complex tasks and generate creative content.

•	 2023 – LLaMA 2: Meta AI’s LLaMA 2 was part of a suite of models that focused on efficiency 
and accessibility, allowing for high-performance language modeling while being more resource-
efficient. This model was aimed at facilitating a broader range of research and application 
development within the AI community.

•	 2023 – Claude 2: Anthropic’s Claude 2 was an advancement over Claude 1, increasing its token 
context window and improving its reasoning and memory capabilities. It aimed to align more 
closely with human values, offering responsible and nuanced generative capabilities for open-
domain question-answering and other conversational AI applications, marking progress in 
ethical AI development.
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The timeline presented highlights the remarkable progress in transformer-based language models over 
the past several years. What originated as an architecture that introduced the concept of self-attention 
has rapidly evolved into models with billions of parameters that can generate coherent text, answer 
questions, and perform a variety of intellectual tasks at high levels of performance. The increase in 
scale and accessibility of models such as GPT-4 has opened new possibilities for AI applications. At the 
same time, recent models have illustrated a focus on safety and ethics and providing more nuanced, 
helpful responses to users.

In the next section, we accomplish a rite of passage for practitioners with an interest in the NL field. 
We implement the key components of the original transformer architecture using Python to more 
fully understand the mechanics that started it all.

Implementing the original Transformer
The following code demonstrates how to implement a minimal transformer model for a Seq2Seq 
translation task, mainly translating English text to French. The code is structured into multiple sections, 
handling various aspects from data loading to model training and translation.

Data loading and preparation

Initially, the code loads a dataset and prepares it for training. The data is loaded from a CSV file, which 
is then split into English and French text. The text is limited to 100 characters for demonstration 
purposes to reduce training time. The CSV file includes a few thousand example data points and 
can be found in the book’s GitHub repository (https://github.com/PacktPublishing/
Python-Generative-AI) along with the complete code:

import pandas as pd
import numpy as np

# Load demo data
data = pd.read_csv("./Chapter_3/data/en-fr_mini.csv")

# Separate English and French lexicons
EN_TEXT = data.en.to_numpy().tolist()
FR_TEXT = data.fr.to_numpy().tolist()

# Arbitrarily cap at 100 characters for demonstration to avoid long 
training times
def demo_limit(vocab, limit=100):
    return [i[:limit] for i in vocab]

https://github.com/PacktPublishing/Python-Generative-AI
https://github.com/PacktPublishing/Python-Generative-AI
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EN_TEXT = demo_limit(EN_TEXT)
FR_TEXT = demo_limit(FR_TEXT)

# Establish the maximum length of a given sequence
MAX_LEN = 100

Tokenization

Next, a tokenizer is trained on the text data. The tokenizer is essential for converting text data into 
numerical data that can be fed into the model:

from tokenizers import Tokenizer
from tokenizers.models import WordPiece
from tokenizers.trainers import WordPieceTrainer
from tokenizers.pre_tokenizers import Whitespace

def train_tokenizer(texts):
    tokenizer = Tokenizer(WordPiece(unk_token="[UNK]"))
    tokenizer.pre_tokenizer = Whitespace()
    trainer = WordPieceTrainer(
        vocab_size=5000,
        special_tokens=["[PAD]", "[UNK]", "[CLS]", "[SEP]", "[MASK]", 
            "<sos>", "<eos>"],
    )
    tokenizer.train_from_iterator(texts, trainer)
    return tokenizer

en_tokenizer = train_tokenizer(EN_TEXT)
fr_tokenizer = train_tokenizer(FR_TEXT)

Data tensorization

The text data is then tensorized, which involves converting the text data into tensor format. This step 
is crucial for preparing the data for training with PyTorch:

import torch
from torch.nn.utils.rnn import pad_sequence

def tensorize_data(text_data, tokenizer):
    numericalized_data = [
        torch.tensor(tokenizer.encode(text).ids) for text in text_data
    ]
    padded_data = pad_sequence(numericalized_data,
        batch_first=True)
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    return padded_data

src_tensor = tensorize_data(EN_TEXT, en_tokenizer)
tgt_tensor = tensorize_data(FR_TEXT, fr_tokenizer)

Dataset creation

A custom dataset class is created to handle the data. This class is essential for loading the data in 
batches during training:

from torch.utils.data import Dataset, DataLoader

class TextDataset(Dataset):
    def __init__(self, src_data, tgt_data):
        self.src_data = src_data
        self.tgt_data = tgt_data

    def __len__(self):
        return len(self.src_data)

    def __getitem__(self, idx):
        return self.src_data[idx], self.tgt_data[idx]

dataset = TextDataset(src_tensor, tgt_tensor)

Embeddings layer

The embeddings layer maps each token to a continuous vector space. This layer is crucial for the model 
to understand and process the text data:

import torch.nn as nn

class Embeddings(nn.Module):
    def __init__(self, d_model, vocab_size):
        super(Embeddings, self).__init__()
        self.embed = nn.Embedding(vocab_size, d_model)

    def forward(self, x):
        return self.embed(x)
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Positional encoding

The positional encoding layer adds positional information to the embeddings, which helps the model 
understand the order of tokens in the sequence:

import math

class PositionalEncoding(nn.Module):
    def __init__(self, d_model, dropout=0.1,
                 max_len=MAX_LEN
    ):
        super(PositionalEncoding, self).__init__()
        self.dropout = nn.Dropout(p=dropout)
        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0.0, max_len).unsqueeze(1)
        div_term = torch.exp(
            torch.arange(0.0, d_model, 2) * - \
                (math.log(10000.0) / d_model)
        )
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = pe.unsqueeze(0)
        self.register_buffer("pe", pe)

    def forward(self, x):
        x = x + self.pe[:, : x.size(1)]
        return self.dropout(x)

Multi-head self-attention

The multi-head self-attention (MHSA) layer is a crucial part of the transformer architecture that 
allows the model to focus on different parts of the input sequence when producing an output sequence:

class MultiHeadSelfAttention(nn.Module):
    def __init__(self, d_model, nhead):
        super(MultiHeadSelfAttention, self).__init__()
        self.attention = nn.MultiheadAttention(d_model, nhead)

    def forward(self, x):
        return self.attention(x, x, x)
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FFN

The FFN is a simple fully connected NN (FCNN) that operates independently on each position:

class FeedForward(nn.Module):
    def __init__(self, d_model, d_ff):
        super(FeedForward, self).__init__()
        self.linear1 = nn.Linear(d_model, d_ff)
        self.dropout = nn.Dropout(0.1)
        self.linear2 = nn.Linear(d_ff, d_model)

    def forward(self, x):
        return self.linear2(self.dropout(torch.relu(self.linear1(x))))

Encoder layer

The encoder layer consists of an MHSA mechanism and a simple FFNN. This structure is repeated 
in a stack to form the complete encoder:

class EncoderLayer(nn.Module):
    def __init__(self, d_model, nhead, d_ff):
        super(EncoderLayer, self).__init__()
        self.self_attn = MultiHeadSelfAttention(d_model, nhead)
        self.feed_forward = FeedForward(d_model, d_ff)
        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.dropout = nn.Dropout(0.1)

    def forward(self, x):
        x = x.transpose(0, 1)
        attn_output, _ = self.self_attn(x)
        x = x + self.dropout(attn_output)
        x = self.norm1(x)
        ff_output = self.feed_forward(x)
        x = x + self.dropout(ff_output)
        return self.norm2(x).transpose(0, 1)

Encoder

The encoder is a stack of identical layers with an MHSA mechanism and an FFN:

class Encoder(nn.Module):
    def __init__(self, d_model, nhead, d_ff, num_layers, vocab_size):
        super(Encoder, self).__init__()
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        self.embedding = Embeddings(d_model, vocab_size)
        self.pos_encoding = PositionalEncoding(d_model)
        self.encoder_layers = nn.ModuleList(
            [EncoderLayer(d_model, nhead, d_ff) for _ in range(
                num_layers)]
        )
        self.feed_forward = FeedForward(d_model, d_ff)

    def forward(self, x):
        x = self.embedding(x)
        x = self.pos_encoding(x)
        for layer in self.encoder_layers:
            x = layer(x)
        return x

Decoder layer

Similarly, the decoder layer consists of two MHA mechanisms—one self-attention and one cross-
attention—followed by an FFN:

class DecoderLayer(nn.Module):
    def __init__(self, d_model, nhead, d_ff):
        super(DecoderLayer, self).__init__()
        self.self_attn = MultiHeadSelfAttention(d_model, nhead)
        self.cross_attn = nn.MultiheadAttention(d_model, nhead)
        self.feed_forward = FeedForward(d_model, d_ff)
        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.norm3 = nn.LayerNorm(d_model)
        self.dropout = nn.Dropout(0.1)

    def forward(self, x, memory):
        x = x.transpose(0, 1)
        memory = memory.transpose(0, 1)
        attn_output, _ = self.self_attn(x)
        x = x + self.dropout(attn_output)
        x = self.norm1(x)
        attn_output, _ = self.cross_attn(x, memory, memory)
        x = x + self.dropout(attn_output)
        x = self.norm2(x)
        ff_output = self.feed_forward(x)
        x = x + self.dropout(ff_output)
        return self.norm3(x).transpose(0, 1)
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Decoder

The decoder is also a stack of identical layers. Each layer contains two MHA mechanisms and an FFN:

class Decoder(nn.Module):
    def __init__(self, d_model, nhead, d_ff, num_layers, vocab_size):
        super(Decoder, self).__init__()
        self.embedding = Embeddings(d_model, vocab_size)
        self.pos_encoding = PositionalEncoding(d_model)
        self.decoder_layers = nn.ModuleList(
            [DecoderLayer(d_model, nhead, d_ff) for _ in range(
                num_layers)]
        )
        self.linear = nn.Linear(d_model, vocab_size)
        self.softmax = nn.Softmax(dim=2)

    def forward(self, x, memory):
        x = self.embedding(x)
        x = self.pos_encoding(x)
        for layer in self.decoder_layers:
            x = layer(x, memory)
        x = self.linear(x)
        return self.softmax(x)

This stacking layer pattern continues to build the transformer architecture. Each block has a specific 
role in processing the input data and generating output translations.

Complete transformer

The transformer model encapsulates the previously defined encoder and decoder structures. This is 
the primary class that will be used for training and translation tasks:

class Transformer(nn.Module):
    def __init__(
        self,
        d_model,
        nhead,
        d_ff,
        num_encoder_layers,
        num_decoder_layers,
        src_vocab_size,
        tgt_vocab_size,
    ):
        super(Transformer, self).__init__()
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        self.encoder = Encoder(d_model, nhead, d_ff, \
            num_encoder_layers, src_vocab_size)
        self.decoder = Decoder(d_model, nhead, d_ff, \
            num_decoder_layers, tgt_vocab_size)

    def forward(self, src, tgt):
        memory = self.encoder(src)
        output = self.decoder(tgt, memory)
        return output

Training function

The train function iterates through the epochs and batches, calculates the loss, and updates the 
model parameters:

def train(model, loss_fn, optimizer, NUM_EPOCHS=10):
    for epoch in range(NUM_EPOCHS):
        model.train()
        total_loss = 0
        for batch in batch_iterator:
            src, tgt = batch
            optimizer.zero_grad()
            output = model(src, tgt)
            loss = loss_fn(output.view(-1, TGT_VOCAB_SIZE),
                tgt.view(-1))
            loss.backward()
            optimizer.step()
            total_loss += loss.item()

        print(f"Epoch {epoch}, 
            Loss {total_loss / len(batch_iterator)}")

Translation function

The translate function uses the trained model to translate a source text into the target language. It 
generates a translation token by token and stops when an end-of-sequence (EOS) token is generated 
or when the maximum target length is reached:

def translate(model, src_text, src_tokenizer,
              tgt_tokenizer, max_target_length=50
):
    model.eval()

    src_tokens = src_tokenizer.encode(src_text).ids
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    src_tensor = torch.LongTensor(src_tokens).unsqueeze(0)

    tgt_sos_idx = tgt_tokenizer.token_to_id("<sos>")
    tgt_eos_idx = tgt_tokenizer.token_to_id("<eos>")

    tgt_tensor = torch.LongTensor([tgt_sos_idx]).unsqueeze(0)

    for i in range(max_target_length):
        with torch.no_grad():
            output = model(src_tensor, tgt_tensor)

        predicted_token_idx = output.argmax(dim=2)[0, -1].item()
        if predicted_token_idx == tgt_eos_idx:
            break
        tgt_tensor = torch.cat((tgt_tensor,
            torch.LongTensor([[predicted_token_idx]])),
            dim=1)

    translated_token_ids = tgt_tensor[0, 1:].tolist()
    translated_text = tgt_tokenizer.decode(translated_token_ids)

    return translated_text

Main execution

In the main block of the script, hyperparameters are defined, the tokenizer and model are instantiated, 
and training and translation processes are initiated:

if __name__ == "__main__":
    NUM_ENCODER_LAYERS = 2
    NUM_DECODER_LAYERS = 2
    DROPOUT_RATE = 0.1
    EMBEDDING_DIM = 512
    NHEAD = 8
    FFN_HID_DIM = 2048
    BATCH_SIZE = 31
    LEARNING_RATE = 0.001

    en_tokenizer = train_tokenizer(EN_TEXT)
    fr_tokenizer = train_tokenizer(FR_TEXT)

    SRC_VOCAB_SIZE = len(en_tokenizer.get_vocab())
    TGT_VOCAB_SIZE = len(fr_tokenizer.get_vocab())
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    src_tensor = tensorize_data(EN_TEXT, en_tokenizer)
    tgt_tensor = tensorize_data(FR_TEXT, fr_tokenizer)

    dataset = TextDataset(src_tensor, tgt_tensor)

    model = Transformer(
        EMBEDDING_DIM,
        NHEAD,
        FFN_HID_DIM,
        NUM_ENCODER_LAYERS,
        NUM_DECODER_LAYERS,
        SRC_VOCAB_SIZE,
        TGT_VOCAB_SIZE,
    )
    loss_fn = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(), lr=LEARNING_RATE)

    batch_iterator = DataLoader(
        dataset, batch_size=BATCH_SIZE,
        shuffle=True, drop_last=True
    )

    train(model, loss_fn, optimizer, NUM_EPOCHS=10)

    src_text = "hello, how are you?"
    translated_text = translate(
        model, src_text, en_tokenizer, fr_tokenizer)
    print(translated_text)

This script orchestrates a machine translation task from loading data to training a transformer model 
and eventually translating text from English to French. Initially, it loads a dataset, processes the text, 
and establishes tokenizers to convert text to numerical data. Following this, it defines the architecture 
of a transformer model in PyTorch, detailing each component from the embeddings’ self-attention 
mechanisms to the encoder and decoder stacks.

The script further organizes the data into batches, sets up a training loop, and defines a translation 
function. Training the model on the provided English and French sentences teaches it to map sequences 
from one language to another. Finally, it translates a sample sentence from English to French to 
demonstrate the model’s capabilities.
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Summary
The advent of the transformer significantly propelled the field of NLP forward, serving as the foundation 
for today’s cutting-edge generative language models. This chapter delineated the progression of NLP that 
paved the way for this pivotal innovation. Initial statistical techniques such as count vectors and TF-IDF 
were adept at extracting rudimentary word patterns, yet they fell short in grasping semantic nuances.

Incorporating neural language models marked a stride toward more profound representations through 
word embeddings. Nevertheless, recurrent networks encountered hurdles in handling longer sequences. 
This inspired the emergence of CNNs, which introduced computational efficacy via parallelism, albeit 
at the expense of global contextual awareness.

The inception of attention mechanisms emerged as a cornerstone. In 2017, Vaswani et al. augmented 
these advancements, unveiling the transformer architecture. The hallmark self-attention mechanism 
of the transformer facilitates contextual modeling across extensive sequences in a parallelized manner. 
The layered encoder-decoder structure meticulously refines representations to discern relationships 
indispensable for endeavors such as translation.

The transformer, with its parallelizable and scalable self-attention design, set new benchmarks in 
performance. Its core tenets are the architectural bedrock for contemporary high-achieving generative 
language models such as GPT.

In the next chapter, we will discuss how to apply pre-trained generative models from prototype 
to production.
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4
Applying Pretrained Generative 

Models: From Prototype  
to Production

In the preceding chapters, we explored the fundamentals of generative AI, explored various generative 
models, such as generative adversarial networks (GANs), diffusers, and transformers, and learned 
about the transformative impact of natural language processing (NLP). As we transition into the 
practical aspects of applying generative AI, we should ground our exploration in a practical example. 
This approach will provide a concrete context, making the technical aspects more relatable and the 
learning experience more engaging.

We will introduce “StyleSprint,” a clothing shop looking to enhance its online presence. One way to 
achieve this is by crafting unique and engaging product descriptions for its various products. However, 
manually creating captivating descriptions for a large inventory is challenging. This situation is 
prime opportunity for the application of generative AI. By leveraging a pretrained generative model, 
StyleSprint can automate the crafting of compelling product descriptions, saving considerable time 
and enriching the online shopping experience for its customers.

As we step into the practical application of a pretrained generative large language models (LLM), the 
first order of business is to set up a Python environment conducive to prototyping with generative 
models. This setup is vital for transitioning the project from a prototype to a production-ready state, 
setting the stage for StyleSprint to realize its goal of automated content generation.

In Chapters 2 and 3, we used Google Colab for prototyping due to its ease of use and accessible GPU 
resources. It served as a great platform to test ideas quickly. However, as we shift our focus toward 
deploying our generative model in a real-world setting, it is essential to understand the transition 
from a prototyping environment such as Google Colab to a more robust, production-ready setup. This 
transition will ensure our solution is scalable, reliable, and well-optimized for handling real-world traffic. 
In this chapter, we will walk through the steps in setting up a production-ready Python environment, 
underscoring the crucial considerations for a smooth transition from prototype to production.
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By the end of this chapter, we will understand the process of taking a generative application from 
a prototyping environment to a production-ready setup. We will define a reliable and repeatable 
strategy for evaluating, monitoring, and deploying models to production.

Prototyping environments
Jupyter notebooks provide an interactive computing environment to combine code execution, text, 
mathematics, plots, and rich media into a single document. They are ideal for prototyping and 
interactive development, making them a popular choice among data scientists, researchers, and 
engineers. Here is what they offer:

•	 Kernel: At the heart of a Jupyter notebook is a kernel, a computational engine that executes 
the code contained in the notebook. For Python, this is typically an IPython kernel. This 
kernel remains active and maintains the state of your notebook’s computations while the 
notebook is open.

•	 Interactive execution: Code cells allow you to write and execute code interactively, inspecting 
the results and tweaking the code as necessary.

•	 Dependency management: You can install and manage libraries and dependencies directly 
within the notebook using pip or conda commands.

•	 Visualization: You can embed plots, graphs, and other visualizations to explore data and 
results interactively.

•	 Documentation: Combining Markdown cells with code cells allows for well-documented, 
self-contained notebooks that explain the code and its output.

A drawback to Jupyter notebooks is that they typically rely on the computational resources of your 
personal computer. Most personal laptops and desktops are not optimized or equipped to handle 
computationally intensive processes. Having adequate computational resources is crucial for managing 
the computational complexity of experimenting with an LLM. Fortunately, we can extend the 
capabilities of a Jupyter notebook with cloud-based platforms that offer computational accelerators 
such as graphics processing units (GPUs) and tensor processing units (TPUs). For example, Google 
Colab instantly enhances Jupyter notebooks, making them conducive to computationally intensive 
experimentation. Here are some of the key features of a cloud-based notebook environment such 
as Google Colab:

•	 GPU/TPU access: Provides free or affordable access to GPU and TPU resources for accelerated 
computation, which is crucial when working with demanding machine learning models

•	 Collaboration: Permits easy sharing and real-time collaboration, similar to Google Docs

•	 Integration: Allows for easy storage and access to notebooks and data
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Let’s consider our StyleSprint scenario. We will want to explore a few different models to generate 
product descriptions before deciding on one that best fits StyleSprint’s goals. We can set up a minimal 
working prototype in Google Colab to compare models. Again, cloud-based platforms provide an 
optimal and accessible environment for initial testing, experimentation, and even some lightweight 
training of models. Here is how we might initially set up a generative model to start experimenting 
with automated product description generation for StyleSprint:

# In a Colab or Jupyter notebook
!pip install transformers
# Google Colab Jupyter notebook
from transformers import pipeline

# Initialize a text generation pipeline with a generative model, say 
GPT-Neo
text _ generator = pipeline(
    'text-generation', model='EleutherAI/gpt-neo-2.7B')

# Example prompt for product description generation
prompt = "This high-tech running shoe with advanced cushioning and 
support"

# Generating the product description
generated _ text = text _ generator(prompt, max _ length=100, do _
sample=True)

# Printing the generated product description
print(generated _ text[0]['generated _ text'])

Output:

This high-tech running shoe with advanced cushioning and support 
combines the best of traditional running shoes and the latest 
technologies.

In this simple setup, we’re installing the transformers library, which offers a convenient interface to 
various pretrained models. We then initialize a text generation pipeline with an open source version of 
GPT-Neo, capable of generating coherent and contextually relevant text. This setup serves as a starting 
point for StyleSprint to experiment with generating creative product descriptions on a small scale.

Later in this chapter, we will expand our experiment to evaluate and compare multiple pretrained 
generative models to determine which best meets our needs. However, before advancing further in 
our experimentation and prototyping, it is crucial to strategically pause and project forward. This 
deliberate forethought allows us to consider the necessary steps for effectively transitioning our 
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experiment into a production environment. By doing so, we ensure a comprehensive view of the 
project from end to end, to align with long-term operational goals.

Figure 4.1: Moving from prototyping to production—the stages

Transitioning to production
As we plan for a production setup, we should first understand the intrinsic benefits and features of 
the prototyping environment we will want to carry forward to a production setting. Many of the 
features of prototyping environments such as Google Colab are deeply integrated and can easily 
go unnoticed, so it is important to dissect and catalog the features we will need in production. For 
example, the following features are inherent in Google Colab and will be critical in production:

•	 Package management: In Colab, installing necessary libraries is as straightforward as 
executing a cell with !pip install library _ name. In production, we will have to 
preinstall libraries or make sure we can install them as needed. We must also ensure that 
project-specific libraries do not interfere with other projects.

•	 Dependency isolation: Google Colab automatically facilitates isolated dependencies, ensuring 
package installations and updates do not interfere with other projects. In production, we may 
also want to deploy various projects using the same infrastructure. Dependency isolation 
will be critical to prevent one project’s dependency updates from impacting other projects.

•	 Interactive code execution: The interactive execution of code cells helps in testing individual 
code snippets, visualizing results, and debugging in real time. This convenience is not necessary 
in production but could be helpful for quick debugging.
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•	 Resource accessibility: With Colab, access to GPUs and TPUs is simplified, which is crucial for 
running computation-intensive tasks. For production, we will want to examine our dynamic 
computational needs and provision the appropriate infrastructure.

•	 Data integration: Colab offers simple connectivity to data sources for analysis and modeling. 
In production, we can either bootstrap our environment with data (i.e., deploy data directly 
into the environment) or ensure connectivity to remote data sources as needed.

•	 Versioning and collaboration: Tracking versions of your project code with Google Colab 
can easily be accomplished using notebooks. Additionally, Colab is preconfigured to interact 
with Git. Git is a distributed version control system that is widely used for tracking changes 
in source code during software development. In production, we will also want to integrate 
Git to manage our code and synchronize it with a remote code repository such as GitHub or 
Bitbucket. Remote versioning ensures that our production environment always reflects the 
latest changes and enables ongoing collaboration.

•	 Error handling and debugging: In Colab, we have direct access to the Python runtime and 
can typically see error messages and tracebacks in real time to help identify and resolve issues. 
We will want the same level of visibility in production via adequate logging of system errors. In 
total, we want to carry over the convenience and simplicity of our Google Colab prototyping 
environment but provide the robustness and scalability required for production. To do so, we 
will map each of the key characteristics we laid out to a corresponding production solution. 
These key features should ensure a smooth transition for deploying StyleSprint’s generative 
model for automated product description generation.

Mapping features to production setup
To ensure we can seamlessly transition our prototyping environment to production, we can leverage 
Docker, a leading containerization tool. Containerization tools package applications with their 
dependencies for consistent performance across different systems. A containerized approach will 
help us replicate Google Colab’s isolated, uniform environments, ensuring reliability and reducing 
potential compatibility issues in production. The table that follows describes how we can map each 
of the benefits of our prototyping environment to a production analog:

Feature Environment
Prototyping Production

Package management Inherent through 
preinstalled 
package managers

Docker streamlines application deployment 
and consistency across environments including 
package managers.

Dependency isolation Inherent through  
notebooks

Docker can also ensure projects are cleanly isolated.
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Feature Environment
Prototyping Production

Interactive 
code execution

Inherent through  
notebooks

Docker helps to maintain versions of Python that 
provide interactive code execution by default. 
However, we may want to connect an integrated 
development environment (IDE) to our production 
environment to interact with code remotely 
as needed.

Resource accessibility Inherent for  
cloud-based  
notebooks

GPU-enabled Docker containers enhance production 
by enabling structured GPU utilization, allowing 
scalable, efficient model performance.

Data integration Not inherent,  
and requires  
code-based  
integration

Integrating Docker with a remote data source, 
such as AWS S3 or Google Cloud Storage, provides 
secure and scalable solutions for importing and 
exporting data.

Versioning 
and collaboration

Inherent through 
notebooks and 
preconfigured 
for Git

Integrating Docker with platforms such as 
GitHub or GitLab enables code collaboration 
and documentation.

Error handling 
and debugging

Inherent through 
direct interactive 
access to runtime

We can embed Python libraries such as logging or 
Loguru in Docker deployments for enhanced error 
tracking in production.

Table 4.1: Transitioning features from Colab to production via Docker

Having mapped out the features of our prototyping environment to corresponding tools and practices 
for a production setup, we are now better prepared to implement a generative model for StyleSprint in 
a production-ready environment. The transition entails setting up a stable, scalable, and reproducible 
Python environment, a crucial step for deploying our generative model to automate the generation 
of product descriptions in a real-world setting. As discussed, we can leverage Docker in tandem with 
GitHub and its continuous integration/continuous deployment (CI/CD) capabilities, providing a 
robust framework for this production deployment. A CI pipeline automates the integration of code 
changes from multiple contributors into a shared repository. We pair CI with CD to automate the 
deployment of our code to a production environment.

Setting up a production-ready environment
So far, we have discussed how to bridge the gap between prototyping and production environments. 
Cloud-based environments such as Google Colab provide a wealth of features that are not inherently 
available in production. Now that we have a better understanding of those characteristics, the next 
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step is to implement a robust production setup to ensure that our application can handle real-world 
traffic, scale as needed, and remain stable over time.

The tools and practices in a production environment differ significantly from those in a prototyping 
environment. In production, scalability, reliability, resource management, and security become 
paramount, whereas, in a prototyping environment, the models are only relied upon by a few users for 
experimentation. In production, we could expect large-scale consumption from divisions throughout 
the organization. For example, in the StyleSprint scenario, there may be multiple departments or 
sub-brands hoping to automate their product descriptions.

In the early stages of our StyleSprint project, we can use free and open source tools such as Docker 
and GitHub for tasks such as containerization, version control, and CI. These tools are offered and 
managed by a community of users, giving us a cost-effective solution. As StyleSprint expands, we 
might consider upgrading to paid or enterprise editions that offer advanced features and professional 
support. For the moment, our focus is on leveraging the capabilities of the open source versions. Next, 
we will walk through the practical implementation of these tools step by step. By the end, we will be 
ready to deploy a production-ready model-as-a-service (MaaS) for automatic product descriptions.

Local development setup
We begin by making sure we can connect to a production environment remotely. We can leverage 
an IDE, which is software that enables us to easily organize code and remotely connect to the 
production environment.

Visual Studio Code

Begin by installing Visual Studio Code (VS Code), a free code editor by Microsoft. It is preferred for 
its integrated Git control, terminal, and marketplace for extensions that enhance its functionality. 
It provides a conducive environment for writing, testing, and debugging code.

Project initialization

Next, we set up a structured project directory to keep the code modular and organized. We will 
also initialize our working directory with Git, which enables us to synchronize code with a remote 
repository. As mentioned, we leverage Git to keep track of code changes and collaborate with others 
more seamlessly. Using the terminal window in Visual Studio, we can initialize the project using three 
simple commands. We use mkdir to create or “make” a directory. We use the cd command to change 
directories. Finally, we use git init to initialize our project with Git. Keep in mind that this assumes 
Git is installed. Instructions to install Git are made available on its website (https://git-scm.com/).

mkdir StyleSprint
cd StyleSprint
git init

https://git-scm.com/
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Docker setup

We’ll now move on to setting up a Docker container. A Docker container is an isolated environment 
that encapsulates an application and its dependencies, ensuring consistent operation across different 
systems. For clarity, we can briefly describe the key aspects of Docker as follows:

•	 Containers: These are portable units comprising the application and its dependencies.

•	 Host operating system’s kernel: When a Docker container is run on a host machine, it utilizes 
the kernel of the host’s operating system and resources to operate, but it does so in a way that 
is isolated from both the host system and other containers.

•	 Dockerfiles: These are scripts used to create container images. They serve as a blueprint 
containing everything needed to run the application. This isolation and packaging method 
prevents application conflicts and promotes efficient resource use, streamlining development 
and deployment.

A containerized approach will help ensure consistency and portability. For example, assume StyleSprint 
finds a cloud-based hosting provider that is more cost-effective; moving to the new provider is as 
simple as migrating a few configuration files.

We can install Docker from the official website. Docker provides easy-to-follow installation guides 
including support for various programming languages.

Once Docker is installed, we can create a Dockerfile in the project directory to specify the environment 
setup. For GPU support, we will want to start from an NVIDIA CUDA base image. Docker, like many 
other virtualized systems, operates using a concept called images. Images are a snapshot of a preconfigured 
environment that can be used as a starting point for a new project. In our case, we will want to start 
with a snapshot that integrates GPU support using the CUDA library, which is a parallel processing 
library provided by NVIDIA. This library will enable the virtualized environment (or container) to 
leverage any GPUs installed on the host machine. Leveraging GPUs will accelerate model inferencing.

Now we can go ahead and create a Dockerfile with the specifications for our application:

# Use an official NVIDIA CUDA runtime as a base image
FROM nvidia/cuda:11.0-base

# Set the working directory in the container to /app
WORKDIR /app

# Copy the current directory contents into the container at /app
COPY . /app

# Install any needed packages specified in requirements.txt
RUN pip install --no-cache-dir -r requirements.txt
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# Make port 80 available to the world outside this container
EXPOSE 80

# Run app.py when the container launches
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "80"]

This Dockerfile serves as a blueprint that Docker follows to build our container. We initiate the process 
from an official NVIDIA CUDA base image to ensure GPU support. The working directory in the 
container is set to /app, where we then copy the contents of our project. Following that, we install the 
necessary packages listed in the requirements.txt file. Port 80 is exposed for external access 
to our application. Lastly, we specify the command to launch our application, which is running app.
py using the Python interpreter. This setup encapsulates all the necessary components, including 
GPU support, to ensure our generative model operates efficiently in a production-like environment.

Requirements file

We also need a method for keeping track of our Python-specific dependencies. The container will 
include Python but will not have any indication as to what requirements our Python application 
has. We can specify those dependencies explicitly by defining a requirements.txt file in our 
project directory to list all the necessary Python packages:

fastapi==0.65.2
torch==1.9.0
transformers==4.9.2
uvicorn==0.14.0

Application code

Now we can create an app.py file for our application code. This is where we will write the code for 
our generative model, leveraging libraries such as PyTorch and Transformers. To expose our model 
as a service, we will use FastAPI, a modern, high-performance framework for building web APIs. 
A web API is a protocol that enables different software applications to communicate and exchange 
data over the internet, allowing them to use each other’s functions and services.

The following snippet creates a minimal API that will serve the model responses whenever another 
application or software requests the /generate/ endpoint. This will enable StyleSprint to host its 
model as a web service. This means that other applications (e.g., mobile apps, batch processes) can 
access the model using a simple URL. We can also add exception handling to provide an informative 
error message should the model produce any kind of error:

from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from transformers import pipeline
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# Load the pre-trained model
generator = pipeline('text-generation', 
    model='EleutherAI/gpt-neo-2.7B')

# Create the FastAPI app
app = FastAPI()

# Define the request body
class GenerationInput(BaseModel):
prompt: str

# Define the endpoint
@app.post("/generate")
def generate _ text(input: GenerationInput):
try:
    # Generate text based on the input prompt
    generated _ text = generator(input.prompt, max _ length=150)
    return {"generated _ text": generated _ text}
except:
    raise HTTPException(status _ code=500,
        detail="Model failed to generate text")

Now that we have a Docker setup, the next step is to deploy the application to the host server. We 
can streamline this process with a CI/CD pipeline. The goal is to fully automate all deployment 
steps, including a suite of tests to ensure that any code changes do not introduce any errors. We 
then leverage GitHub Actions to create a workflow that is directly integrated with a code repository.

Creating a code repository

Before we can leverage the automation capabilities of GitHub, we will need a repository. Creating a 
GitHub repository is straightforward, following these steps:

1.	 Sign up/log in to GitHub: If you don’t have a GitHub account, sign up at github.com. If 
you already have an account, just log in.

2.	 Go to the repository creation page: Click the + icon in the top-right corner of the GitHub 
home page and select New repository.

3.	 Fill in the repository details:

	� Repository Name: Choose a name for your repository

	� Description (optional): Add a brief description of your repository

	� Visibility: Select either Public (anyone can see this repository) or Private (only you and 
the collaborators you invite can see it)

http://github.com


Local development setup 81

4.	 Initialize the repository with a README (optional):

	� Check Initialize this repository with a README if you want to add a simple text file that 
can be updated later to provide instructions for collaborators.

	� We can also add a .gitignore file or choose a license. A gitignore file allows us to add 
paths or file types that should not be uploaded to the repository. For example, Python creates 
temporary files that are not critical to the application. Adding ` _ _ pycache _ _ /̀  
to the gitignore file will automatically ignore all contents of that directory.

5.	 Create repository: Click the Create repository button.

With our repository setup complete, we can move on to defining our CI/CD pipeline to automate 
our deployments.

CI/CD setup

To create a pipeline, we will need a configuration file that outlines the stages of deployment and 
instructs the automation server to build and deploy our Docker container. Let’s look at the steps:

1.	 In our GitHub repository, we can create a new file in the .github/workflows directory named 
ci-cd.yml. GitHub will automatically find any files in this directory to trigger deployments.

2.	 Open ci-cd.yml and define the following workflow:

name: CI/CD Pipeline

on:
  push:
    branches:
      - main

jobs:
  build-and-test:
    runs-on: ubuntu-latest

  steps:
    - name: Checkout code
      uses: actions/checkout@v4

    - name: Build Docker image
  # assumes the Dockerfile is in the root (.)
      run: docker build -t stylesprint .

    - name: Run tests
  # assumes a set of unit tests were defined
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      run: docker run stylesprint python -m unittest discover

deploy:
  needs: build-and-test
  runs-on: ubuntu-latest

  steps:
    - name: Checkout code
      uses: actions/checkout@v4

    - name: Login to DockerHub
      run: echo ${{ secrets.DOCKER _ PASSWORD }} | docker login -u 
${{ secrets.DOCKER _ USERNAME }} --password-stdin

    - name: Push Docker image
      run: |
        docker tag stylesprint:latest ${{ secrets.DOCKER _
USERNAME }}/stylesprint:latest
        docker push ${{ secrets.DOCKER _ USERNAME }}/
stylesprint:latest

In this setup, our workflow consists of two primary jobs: build-and-test and deploy. The build-and-
test job is responsible for checking out the code from the repository, building the Docker image, and 
executing any tests. On the other hand, the deploy job, which relies on completing build-and-test, 
handles DockerHub login and pushes the Docker image there. DockerHub, similar to GitHub, is a 
repository specifically for Docker images.

For authenticating with DockerHub, it is advised to securely store your DockerHub credentials in 
your GitHub repository. This can be done by navigating to your repository on GitHub, clicking on 
Settings, then Secrets, and adding DOCKER _ USERNAME and DOCKER _ PASSWORD as new 
repository secrets.

Notice that we did not have to perform any additional steps to execute the pipeline. The workflow is 
designed to trigger automatically upon a push (or upload) to the main branch. Recall that the entire 
process relies on the Git pattern where new changes are registered through a commit or check-in of 
code and a push or upload of code changes. Whenever changes are pushed, we can directly observe 
the entire pipeline in action within the Actions tab of the GitHub repository.

We have now walked through all of the steps necessary to deploy our model to production. With all 
of this critical setup behind us, we can now return to choosing the best model for our project. The 
goal is to find a model that can effectively generate captivating product descriptions for StyleSprint. 
However, the variety of generative models available requires a thoughtful choice based on our project’s 
needs and constraints.
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Moreover, we want to choose the right evaluation metrics and discuss other considerations that 
will guide us in making an informed decision for our project. This exploration will equip us with 
the knowledge needed to select a model that not only performs well but also aligns with our project 
objectives and the technical infrastructure we have established.

Model selection – choosing the right pretrained 
generative model
Having established a minimal production environment in the previous section, we now focus on a 
pivotal aspect of our project – selecting the right generative model for generating engaging product 
descriptions. The choice of model is crucial as it significantly influences the effectiveness and efficiency of 
our solution. The objective is to automate the generation of compelling and accurate product descriptions 
for StyleSprint’s diverse range of retail products. By doing so, we aim to enrich the online shopping 
experience for customers while alleviating the manual workload of crafting unique product descriptions.

Our objective is to select a generative model that can adeptly handle nuanced and sophisticated text 
generation to significantly expedite the process of creating unique, engaging product descriptions, 
saving time and resources for StyleSprint.

In selecting our model, it is important to thoroughly evaluate various factors influencing its 
performance and suitability for the project.

Meeting project objectives

Before we can select and apply evaluation methods to our model selection process, we should first make 
sure we understand the project objectives. This involves defining the business problem, identifying 
any technical constraints, identifying any risk associated with the model, including interpretation 
of model outcomes, and ascertaining considerations for any potential disparate treatment or bias:

•	 Problem definition: In our scenario, the goal is to create accurate and engaging descriptions 
for a wide range of retail clothing. As StyleSprint’s product range may expand, the system 
should scale seamlessly to accommodate a larger inventory without significantly increasing 
operational costs. Performance expectations include compelling descriptions to attract potential 
customers, accuracy to avoid misrepresentation, and prompt generation to maintain an up-to-
date online catalog. Additionally, StyleSprint may apply personalized content descriptions 
based on a user’s shopping history. This implies that the model may have to provide product 
descriptions in near-real-time.

•	 Technical constraints: To maximize efficiency, there should not be any noticeable delay (latency) 
in responses from the model API. The system should be capable of real-time updates to the 
online catalog (as needed), and the hardware should support quick text generation without 
compromising quality while remaining cost-effective, especially as the product range expands.
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•	 Transparency and openness: Generally, pretrained models from developers who disclose architectures 
and training data sources are preferred, as this level of transparency allows StyleSprint to have a 
clear understanding of any risks or legal implications associated with model use. Additionally, any 
usage restrictions imposed by using models provided as APIs, such as request or token limitations, 
should be understood as they could hinder scalability for a growing catalog.

•	 Bias and fairness: Identifying and mitigating biases in model outputs to ensure fair and neutral 
representations is crucial, especially given StyleSprint’s diverse target audience. Ensuring 
that the generated descriptions are culturally sensitive is of paramount importance. Fair 
representation ensures that the descriptions accurately and fairly represent the products to 
all potential customers, irrespective of their individual characteristics or social backgrounds.

•	 Suitability of pretraining: The underlying pretraining of generative models plays a significant 
role in their ability to generate meaningful and relevant text. Investigating the domains and 
data on which the models were pretrained or fine-tuned is important. A model pretrained 
on a broad dataset may be versatile but could lack domain-specific nuances. For StyleSprint, 
a model that is fine-tuned on fashion-related data or that has the ability to be fine-tuned on 
such data would be ideal to ensure the generated descriptions are relevant and appealing.

•	 Quantitative metrics: Evaluating the quality of generated product descriptions for StyleSprint 
necessitates a combination of lexical and semantic metrics. Lexical overlap metrics measure 
the lexical similarity between generated and reference texts. Specifically, Bilingual Evaluation 
Understudy (BLEU) emphasizes n-gram precision, Recall-Oriented Understudy for Gisting 
Evaluation (ROUGE) focuses on n-gram recall, and Metric for Evaluation of Translation 
with Explicit Ordering (METEOR) aims for a more balanced evaluation by considering 
synonyms and stemming. For contextual and semantic evaluation, we use similarity metrics 
to assess the semantic coherence and relevance of the generated descriptions, often utilizing 
embeddings to represent text in a way that captures its meaning.

We can further refine our assessment of the alignment between generated descriptions and product 
images using models such as Contrastive Language-Image Pretraining (CLIP). Recall that we used 
CLIP in Chapter 2 to score the compatibility between captions and a synthesized image. In this case, 
we can apply CLIP to measure whether our generated descriptions accurately reflect the visual aspects 
of the products. Collectively, these evaluation techniques provide objective methods for assessing 
the performance of the generative model in creating effective product descriptions for StyleSprint:

•	 Qualitative metrics: We introduce qualitative evaluation to measure nuances such as the 
engaging and creative nature of descriptions. We also want to ensure we consider equity and 
inclusivity in the generated content, which is critical to avoid biases or language that could 
alienate or offend certain groups. Methods for engagement assessment could include customer 
surveys or A/B testing, a systematic method for testing two competing solutions. Additionally, 
having a diverse group reviewing the content for equity and inclusivity could provide valuable 
insights. These steps help StyleSprint create captivating, respectful, and inclusive product 
descriptions, fostering a welcoming environment for all customers.
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•	 Scalability: The computational resources required to run a model and the model’s ability to 
scale with increasing data are vital considerations. Models that demand extensive computational 
power may not be practical for real-time generation of product descriptions, especially as the 
product range expands. A balance between computational efficiency and output quality is 
essential to ensure cost-effectiveness and scalability for StyleSprint.

•	 Customization and fine-tuning capabilities: The ability to fine-tune or customize the model 
on domain-specific data is crucial for better aligning with brand-specific requirements. 
Exploring the availability and ease of fine-tuning can significantly impact the relevance and 
quality of generated descriptions, ensuring that they resonate well with the brand identity 
and product range of StyleSprint. In practice, some models are too large to fine-tune without 
considerable resources, even when efficient methods are applied. We will explore fine-tuning 
considerations in detail in the next chapter.

Now that we have carefully considered how we might align the model to the project’s goals, we are 
almost ready to evaluate our initial model selection against a few others to ensure we make the right 
choice. However, before benchmarking, we should dedicate time to understanding one vital aspect 
of the model selection process: model size and computational complexity.

Model size and computational complexity

The size of a generative model is often described by the number of parameters it has. Parameters 
in a model are the internal variables that are fine-tuned during the training process based on the 
training data. In the context of neural networks used in generative models, parameters typically 
refer to the weights and biases adjusted through training to minimize the discrepancy between 
predicted outputs and actual targets.

Moreover, a model with more parameters can capture more complex patterns in the data, often leading 
to better performance on the task at hand. While larger models often perform better in terms of the 
quality of the generated text, there’s a point of diminishing returns beyond which increasing model 
size yields marginal improvements. Moreover, the increased size comes with its own set of challenges:

•	 Computational complexity: Larger models require more computational power and memory, 
during both training and inference (the phase where the model is used to make predictions 
or generate new data based on the learned parameters). This can significantly increase the 
costs and the time required to train and use the model, making it less suitable for real-time 
applications or resource-constrained environments.
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The number of parameters significantly impacts the computational complexity of a model. Each 
parameter in a model is a variable that must be stored in memory during computation, during both 
training and inference. Here are some specific considerations for computational requirements:

	� Memory and storage: The total size of the model in memory is the product of the number 
of parameters and the size of each parameter (typically a 32-bit or 64-bit float). For instance, 
a model with 100 million parameters, each represented by a 32-bit float, would require 
approximately 400 MB of memory (100 million * 32 bits = 400 million bits = 400 MB). 
Now consider a larger model, say with 10 billion parameters; the memory requirement 
jumps to 40 GB (10 billion * 32 bits = 40 billion bits = 40 GB). This requirement is just for 
the parameters and does not account for other data and overheads the model needs for 
its operations.

	� Loading into memory: When a model is used for inference, its parameters must be loaded 
into the RAM of the machine it’s running on. For a large model with 10 billion parameters, 
you would need a machine with enough RAM to accommodate the entire model, along 
with additional memory for the operational overhead, the input data, and the generated 
output. Suppose the model is too large to fit in memory. In that case, it may need to be 
sharded or distributed across multiple machines or loaded in parts, which can significantly 
complicate the deployment and operation of the model and also increase the latency of 
generating outputs.

•	 Specialized hardware requirements: Larger models require specialized hardware, such as 
powerful GPUs or TPUs, which could increase the project costs. As discussed, models with 
a large number of parameters require powerful computational resources for both training 
and inference. Hardware accelerators such as GPUs and TPUs are often employed to meet 
these demands. These hardware accelerators are designed to handle the parallel computation 
capabilities needed for the matrix multiplications and other operations inherent in neural 
network computations, speeding up the processing significantly compared to traditional 
central processing units (CPUs).

Cloud-based infrastructure can alleviate the complexity of setup but often has usage-based 
pricing. Understanding infrastructure costs on a granular level is vital to ensuring that 
StyleSprint stays within its budget.

•	 Latency: We’ve briefly discussed latency, but it is important to reiterate that larger models 
typically have higher latency, which could be a problem for applications that require real-time 
responses. In our case, we can process the descriptions as batches asynchronously. However, 
StyleSprint may have projects that require fast turnarounds, requiring batches to be completed 
in hours and not days.
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In the case of StyleSprint, the trade-off between model performance and size must be carefully 
evaluated to ensure the final model meets the project’s performance requirements while staying 
within budget and hardware constraints. StyleSprint was hoping to have near-real-time responses 
to provide personalized descriptions, which typically translates to a smaller model with less 
computational complexity. However, it was also important that the model remains highly accurate 
and aligns with branding standards for tone and voice, which may require a larger model trained 
or fine-tuned on a larger dataset. In practice, we can evaluate the performance of models relative to 
size and complexity through benchmarking.

Benchmarking

Benchmarking is a systematic process used to evaluate the performance of different generative 
models against predefined criteria. This process involves comparing the models on various metrics 
to understand their strengths, weaknesses, and suitability for the project. It is an empirical method 
(based on observation) to obtain data on how the models perform under similar conditions, providing 
insights that can inform the decision-making process for model selection.

In the StyleSprint scenario, benchmarking can be an invaluable exercise to navigate the trade-offs 
between model size, computational complexity, and the accuracy and creativity of generated descriptions.

For our benchmarking exercise, we can return to our Google Colab prototyping environment 
to quickly load various generative models and run them through tests designed to evaluate their 
performance based on the considerations outlined in the previous sections, such as computational 
efficiency and text generation quality. Once we have completed our evaluation and comparison, we 
can make a few simple changes to our production application code and it will automatically redeploy. 
Benchmarking will be instrumental in measuring the quality of the descriptions relative to the 
model size and complexity. Recall that we will measure quality and overall model performance along 
several dimensions, including lexical and semantic similarity to a “gold standard” of human-written 
descriptions, and a qualitative assessment performed by a diverse group of reviewers.

The next step is to revisit and adapt our original prototyping code to include a few challenger models 
and apply evaluation metrics.

Updating the prototyping environment
For our evaluation steps, there are a few key changes to our original experimentation setup in Google 
Colab. First, we will want to make sure we leverage performance acceleration. Google Colab offers 
acceleration via GPU or TPU environments. For this experiment, we will leverage GPU. We will also want 
to transition from the Transformers library to a slightly more versatile library such as Langchain, which 
allows us to test both open source models such as GPT-Neo and commercial models such as GPT-3.5.
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GPU configuration

Ensure you have a GPU enabled for better performance. Returning to Google Colab, we can follow 
these steps to enable GPU acceleration:

1.	 Click on Runtime in the top menu (see Figure 4.2):

Figure 4.2: Runtime drop-down menu

2.	 Select Change runtime type from the drop-down menu, as shown in the preceding screenshot.

3.	 In the pop-up window, select GPU from the Hardware accelerator drop-down menu (see 
Figure 4.3):
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Figure 4.3: Select GPU and click on Save

4.	 Click on Save.

Now your notebook is set up to use a GPU to significantly speed up the computations needed for 
the benchmarking process. You can verify the GPU availability using the following code snippet:

# Verify GPU is available
import torch
torch.cuda.is _ available()

This code snippet will return True if a GPU is available and False otherwise. This setup ensures 
that you have the necessary computational resources to benchmark various generative models. The 
utilization of a GPU will be crucial when it comes to handling large models and extensive computations.

Loading pretrained models with LangChain

In our first simple experiment, we relied on the Transformers library to load an open source version 
of GPT. However, for our benchmarking exercise, we want to evaluate the retail version of GPT-3 
alongside open source models. We can leverage LangChain, a versatile library that provides a 
streamlined interface, to access both open source models from providers such as Hugging Face and 
closed source models such as OpenAI’s GPT-3.5. LangChain offers a unified API that simplifies 
benchmarking and comparison through standardization. Here are the steps to do it:

1.	 Install necessary libraries: We begin by installing the required libraries in our Colab 
environment. LangChain simplifies the interaction with models hosted on OpenAI and 
Hugging Face.

!pip -q install openai langchain huggingface _ hub
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2.	 Set up credentials: We obtain the credentials from OpenAI for accessing GPT-3, GPT-4, 
or whichever closed source model we select. We also provide credentials for the Hugging 
Face Hub, which hosts over 350,000 open source models. We must store these credentials 
securely to prevent any unauthorized access, especially in the case where model usage has 
an associated cost.

import os

os.environ['OPENAI _ API _ KEY'] = 'your _ openai _ api _ key _ here'
os.environ['HUGGINGFACEHUB _ API _ TOKEN'] = 
    'your _ huggingface _ token _ here'

3.	 Load models: With LangChain, we can quickly load models and generate responses. The 
following example demonstrates how to load GPT-3 and GPT-Neo from Hugging Face:

!pip install openai langchain[llms] huggingface _ hub

from langchain.llms import OpenAI, HuggingFaceHub

# Loading GPT-3
llm _ gpt3 = OpenAI(model _ name='text-davinci-003',
                  temperature=0.9,
                  max _ tokens = 256)

# Loading Neo from Hugging Face
llm _ neo = HuggingFaceHub(repo _ id=' EleutherAI/gpt-neo-2.7B',
                         model _ kwargs={"temperature":0.9}
)

Notice that we have loaded two models that are significantly different in size. As the model signature 
suggests, GPT-Neo was trained on 2.7 billion parameters. Meanwhile, according to information 
available from OpenAI, Davinci was trained on 175 billion parameters. As discussed, a model that 
is significantly larger is expected to have captured much more complex patterns and will likely 
outperform a smaller model. However, these very large models are typically hosted by major providers 
and have higher usage costs. We will revisit cost considerations later. For now, we can continue to 
the next step, which is to prepare our testing data. Our test data should provide a baseline for model 
performance that will inform the cost versus performance trade-off.

Setting up testing data

In this context, testing data should comprise product attributes from the StyleSprint website (e.g., 
available colors, sizes, materials, etc.) and existing product descriptions written by the StyleSprint 
team. The human-written descriptions serve as the “ground truth,” or the standard against which 
to compare the models’ generated descriptions.
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We can gather product data from existing datasets by scraping data from e-commerce websites or 
using a pre-collected dataset from StyleSprint’s database. We should also ensure a varied collection 
of products to test a model’s capability across different categories and styles. The process of dividing 
data into distinct groups or segments based on shared characteristics is typically referred to as 
segmentation. Understanding a model’s behavior across segments should give us an indication 
of how well it can perform across the entire family of products. For the purposes of this example, 
product data is made available in the GitHub companion to this book (https://github.com/
PacktPublishing/Generative-AI-Foundations-in-Python).

Let’s see how we can extract relevant information for further processing:

import pandas as pd

# Assume `product _ data.csv̀  is a CSV file with product data
# The CSV file has two columns: 'product _ image' and 
# 'product _ description' 

# Load the product data
product _ data = pd.read _ csv('product _ data.csv')

# Split the data into testing and reference sets
test _ data = product _ data.sample(frac=0.2, random _ state=42)
reference _ data = product _ data.drop(test _ data.index)

# Checkpoint the testing and reference data
test _ data.to _ csv('test _ data.csv', index=False)
reference _ data.to _ csv('reference _ data.csv', index=False)
# Extract reference descriptions and image file paths
reference _ descriptions = /
    reference _ data['product _ description'].tolist()
product _ images = reference _ data['product _ image'].tolist()

We must also format the product data in a way that makes it ready to be input into the models for 
description generation. This could be just the product title or a combination of product attributes:

# Assume `product _ metadatà  is a column in the data that contains the 
collective information about the product including the title of the 
product and attributes.
# Format the input data for the models
model _ input _ data = reference _ data['product _ metadata].tolist()
reference _ descriptions = \
    reference _ data['product _ description'].tolist()

https://github.com/PacktPublishing/Generative-AI-Foundations-in-Python
https://github.com/PacktPublishing/Generative-AI-Foundations-in-Python
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Finally, we will ask the model to generate a batch of product descriptions using each model.

from langchain import LLMChain, PromptTemplate
from tqdm.auto import tqdm

template = """
Write a creative product description for the following product: 
{product _ metadata}
"""

PROMPT = PromptTemplate(template=template, 
    input _ variables=["product _ metadata"])

def generate _ descriptions(
    llm: object, 
    prompt: PromptTemplate = PROMPT
) -> list:
    # Initialize the LLM chain
    llm _ chain = LLMChain(prompt=prompt, llm=llm)
    descriptions = []
    for i in tqdm(range(len(model _ input _ data))):
        description = llm _ chain.run(model _ input _ data[i])
        descriptions.append(description)
    return descriptions

gpt3 _ descriptions = generate _ descriptions(llm _ gpt3)
gptneo _ descriptions = generate _ descriptions(llm _ neo)

Now, with the testing data set up, we have a structured dataset of product information, reference 
descriptions, and images ready for use in the evaluation steps.

Quantitative metrics evaluation
Now that we have leveraged Langchain to load multiple models and prepared testing data, we are 
ready to begin applying evaluation metrics. These metrics capture accuracy and alignment with 
product images and will help us assess how well the models generate product descriptions compared to 
humans. As discussed, we focused on two categories of metrics, lexical and semantic similarity, which 
provide a measure of how many of the same words were used and how much semantic information 
is common to both the human and AI-generated product descriptions.

In the following code block, we apply BLEU, ROUGE, and METEOR to evaluate the lexical similarity 
between the generated text and the reference text. Each of these has a reference-based assumption. 
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This means that each metric assumes we are comparing against a human reference. We have already 
set aside our reference descriptions (or gold standard) for a diverse set of products to compare side-
by-side with the generated descriptions.

!pip install rouge sumeval nltk

# nltk requires an additional package
import nltk
nltk.download('wordnet')

 from nltk.translate.bleu _ score import sentence _ bleu

from rouge import Rouge
from sumeval.metrics.rouge import RougeCalculator
from nltk.translate.meteor _ score import meteor _ score

def evaluate(
    reference _ descriptions: list, 
    generated _ descriptions: list
) -> tuple:
    # Calculating BLEU score
    bleu _ scores = [
        sentence _ bleu([ref], gen) 
        for ref, gen in zip(reference _ descriptions, generated _
descriptions)
    ]
    average _ bleu = sum(bleu _ scores) / len(bleu _ scores)

    # Calculating ROUGE score
    rouge = RougeCalculator()
    rouge _ scores = [rouge.rouge _ n(gen, ref, 2) for ref,
        gen in zip(reference _ descriptions,
        generated _ descriptions)]
    average _ rouge = sum(rouge _ scores) / len(rouge _ scores)

    # Calculating METEOR score
    meteor _ scores = [ meteor _ score([ref.split() ],
        gen.split()) for ref,
        gen in zip(reference _ descriptions,
        generated _ descriptions)]
    average _ meteor = sum(meteor _ scores) / len(meteor _ scores)

    return average _ bleu, average _ rouge, average _ meteor
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average _ bleu _ gpt3, average _ rouge _ gpt3, average _ meteor _ gpt3 = \
    evaluate(reference _ descriptions, gpt3 _ descriptions)
print(average _ bleu _ gpt3, average _ rouge _ gpt3, average _ meteor _ gpt3)

average _ bleu _ neo, average _ rouge _ neo, average _ meteor _ neo = \
    evaluate(reference _ descriptions, gptneo _ descriptions)
print(average _ bleu _ neo, average _ rouge _ neo, average _ meteor _ neo)

We can evaluate the semantic coherence and relevance of the generated descriptions using 
sentence embeddings:

!pip install sentence-transformers
from sentence _ transformers import SentenceTransformer, util

model = SentenceTransformer('paraphrase-MiniLM-L6-v2')

def cosine _ similarity(reference _ descriptions, generated _
descriptions):

    # Calculating cosine similarity for generated descriptions

    cosine _ scores = [util.pytorch _ cos _ sim(
        model.encode(ref), model.encode(gen)) for ref,
        gen in zip(reference _ descriptions,
        generated _ descriptions)]
    average _ cosine = sum(cosine _ scores) / len(cosine _ scores)

    return average _ cosine

average _ cosine _ gpt3 = cosine _ similarity(
    reference _ descriptions, gpt3 _ descriptions)
print(average _ cosine _ gpt3)

average _ cosine _ neo = cosine _ similarity(
    reference _ descriptions, gptneo _ descriptions)
print(average _ cosine _ neo)

Alignment with CLIP

We again leverage the CLIP model to evaluate the alignment between generated product descriptions 
and corresponding images, similar to our approach in Chapter 2. The CLIP model, adept at correlating 
visual and textual content, scores the congruence between each product image and its associated 
generated and reference descriptions. The reference description serves as a human baseline for 
accuracy. These scores provide a quantitative measure of our generative model’s effectiveness at 
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producing descriptions that correspond well to the product image. The following is a snippet from 
a component that processes the generated descriptions combined with corresponding images to 
generate a CLIP score. The full component code (including image pre-processing) is available in the 
chapter 4 folder of this book’s GitHub repository at https://github.com/PacktPublishing/
Generative-AI-Foundations-in-Python).

clip _ model = "openai/clip-vit-base-patch32"
def clip _ scores(images, descriptions,
                model=clip _ model,
                processor=clip _ processor
):
    scores = []

    # Process all images and descriptions together
    inputs = process _ inputs(processor, descriptions, images)

    # Get model outputs
    outputs = model(**inputs)
    logits _ per _ image = outputs.logits _ per _ image # Image-to-text 
logits

    # Diagonal of the matrix gives the scores for each image-
description pair
    for i in range(logits _ per _ image.size(0)):
        score = logits _ per _ image[i, i].item()
    scores.append(score)

    return scores

reference _ images = [
    load _ image _ from _ path(image _ path) 
    for image _ path in reference _ data.product _ image _ path
]

gpt3 _ generated _ scores = clip _ scores(
    reference _ images, gpt3 _ descriptions
)

reference _ scores = clip _ scores(
    reference _ images, reference _ descriptions
)

# Compare the scores
for i, (gen _ score, ref _ score) in enumerate(

https://github.com/PacktPublishing/Generative-AI-Foundations-in-Python
https://github.com/PacktPublishing/Generative-AI-Foundations-in-Python
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    zip(gpt3 _ generated _ scores, reference _ scores)
):
    print(f"Image {i}: Generated Score = {gen _ score:.2f}, 
        Reference Score = {ref _ score:.2f}")

In evaluating product descriptions using the CLIP model, the alignment scores generated for each 
image-description pair are computed relative to other descriptions in the batch. Essentially, CLIP 
assesses how well a specific description (either generated or reference) aligns with a given image 
compared to other descriptions within the same batch. For example, a score of 33.79 indicates that 
the description aligns with the image 33.79% better than the other descriptions in the batch align 
with that image. In comparing against the reference, we expect that the scores based on the generated 
descriptions should align closely with the scores based on the reference descriptions.

Now that we have calculated lexical and semantic similarity to the reference scores, and alignment 
between images and generated descriptions relative to reference descriptions, we can evaluate our 
models holistically and interpret the outcome of our quantitative evaluation.

Interpreting outcomes

We begin with lexical similarity, which gives us an indication of similarity in phrasing and keywords 
between the reference and generated descriptions:

BLEU ROUGE METEOR
GPT-3.5 0.147 0.094 0.261

GPT-Neo 0.132 0.05 0.059

Table 4.2: Lexical similarity

In evaluating text generated by GPT-3.5 and GPT-Neo models, we use several lexical similarity metrics: 
BLEU, ROUGE, and METEOR. BLEU scores, which assess the precision of matching phrases, show 
GPT-3.5 (0.147) slightly outperforming GPT-Neo (0.132). ROUGE scores, focusing on the recall of 
content, indicate that GPT-3.5 (0.094) better captures reference content than GPT-Neo (0.05). METEOR 
scores, combining both precision and recall with synonym matching, reveal a significant lead for 
GPT-3.5 (0.261) over GPT-Neo (0.059). Overall, these metrics suggest that GPT-3.5’s generated text 
aligns more closely with reference standards, both in word choice and content coverage, compared to 
that of GPT-Neo.
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Next, we evaluate semantic similarity, which measures how closely the meanings of the generated 
text align with the reference text. This assessment goes beyond mere word-to-word matching and 
considers the context and overall intent of the sentences. Semantic similarity evaluates the extent to 
which the generated text captures the nuances, concepts, and themes present in the reference text, 
providing insight into the model’s ability to understand and replicate deeper semantic meanings:

Model Mean cosine similarity
GPT-3.5 0.8192

GPT-Neo 0.2289

Table 4.3: Semantic similarity

The mean cosine similarity scores reveal a stark contrast between the two models’ performance in 
semantic similarity. GPT-3.5 shows a high degree of semantic alignment with the reference text. 
GPT-Neo’s significantly lower score suggests a relatively poor performance, indicating that the 
generated descriptions were fundamentally dissimilar to descriptions written by humans.

Finally, we review the CLIP scores, which tell us how well the generated descriptions align visually 
with the corresponding images. These scores, derived from a model trained to understand and 
correlate visual and textual data, provide a measure of the relevance and accuracy of the text in 
representing the visual content. High CLIP scores indicate a strong correlation between the text 
and the image, suggesting that the generated descriptions are not only textually coherent but also 
contextually appropriate and visually descriptive:

Model Mean CLIP Reference delta
GPT-3.5 26.195 2.815

GPT-Neo 22.647 6.363

Table 4.4: Comparative CLIP score analysis for GPT-3.5 and GPT-Neo models

We calculated the CLIP scores from the reference descriptions, which represent the average alignment 
score between a set of benchmark descriptions and the corresponding images. We then calculated 
CLIP scores for each model and analyzed the delta. In concert with our other metrics, GPT-3.5 has 
a clear advantage over GPT-Neo, aligning more closely with the reference.

Overall, GPT-3.5 appears to significantly outperform GPT-Neo across all quantitative measures. 
However, it is worth noting that GPT-3.5 incurs a higher cost and generally has a higher latency 
than GPT-Neo. In this case, the StyleSprint team would conduct a qualitative analysis to accurately 
determine whether the GPT-Neo descriptions do not align with brand guidelines and expectations, 
therefore making the cost of using the better model worthwhile. As discussed, the trade-off here is 
not clear-cut. StyleSprint must carefully consider that although using a commodity such as GPT-3.5 
does not incur computational costs directly, on-demand costs could increase significantly as model 
usage rises.
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The contrasting strengths of the two models pose a decision-making challenge. While one clearly 
excels in performance metrics and alignment with CLIP, implying higher accuracy and semantic 
correctness, the other is significantly more resource-efficient and scalable, which is crucial for cost-
effectiveness. At this stage, it becomes critical to assess model outcomes qualitatively and to engage 
stakeholders to help understand organizational priorities.

With these considerations in mind, we’ll revisit qualitative considerations such as transparency, 
bias, and fairness and how they play into the broader picture of deploying a responsible and effective 
AI system.

Responsible AI considerations
Addressing implicit or covert societal biases in AI systems is crucial to ensure responsible AI 
deployment. Although it may not seem obvious how a simple product description could introduce 
bias, the language used can inadvertently reinforce stereotypes or exclude certain groups. For instance, 
descriptions that consistently associate certain body types or skin tones with certain products or that 
unnecessarily default to gendered language can unintentionally perpetuate societal biases. However, 
with a structured mitigation approach, including algorithmic audits, increased model transparency, 
and stakeholder engagement, StyleSprint can make sure its brand promotes equity and inclusion.

Addressing and mitigating biases

We present several considerations, as suggested by Costanza-Chock et al. in Who Audits the Auditors? 
Recommendations from a field scan of the algorithmic auditing ecosystem:

•	 Professional environment examination: Creating a supportive professional environment is 
crucial for addressing algorithmic fairness. Implementing whistleblower protections facilitates 
the safe reporting of biases and unfair practices while establishing processes for individuals 
to report harms to ensure these concerns are addressed proactively.

•	 Custom versus standardized audit frameworks: While custom audit frameworks are 
expected, considering standardized methods may enhance rigor and transparency in bias 
mitigation efforts. Engaging with external auditing entities could offer unbiased evaluations 
of StyleSprint’s AI systems, aligning with the observations by Costanza-Chock et al. (2022).

•	 Focusing on equity, not just equality: Equity notions acknowledge differing needs, essential 
for a comprehensive approach to fairness. Performing intersectional and small population 
analyses could help you to understand and address biases beyond legally protected classes.

•	 Disclosure and transparency: Disclosing audit methods and outcomes can foster a culture of 
transparency and continuous improvement. Officially released audits could help you establish 
best practices and gain stakeholder trust.
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•	 Mixed methods analyses: As presented, a mix of technical and qualitative analyses could 
provide a holistic view of the system’s fairness. Engaging non-technical stakeholders could 
emphasize qualitative analyses.

•	 Community and stakeholder engagement: Again, involving diverse groups and domain 
experts in audits could ensure diverse perspectives are considered in bias mitigation efforts. 
Establishing feedback loops with stakeholders could facilitate continuous improvement.

•	 Continuous learning and improvement: Staying updated on emerging standards and best 
practices regarding AI fairness is crucial for continuous improvement. Fostering a culture of 
learning could help in adapting to evolving fairness challenges and regulatory landscapes, 
thus ensuring StyleSprint’s AI systems remain fair and responsible over time.

Transparency and explainability

Generally, explainability in machine learning refers to the ability to understand the internal mechanics 
of a model, elucidating how it makes decisions or predictions based on given inputs. However, 
achieving explainability in generative models can be much more complex. As discussed, unlike 
discriminative machine learning models, generative models do not have the objective of learning 
a decision boundary, nor do they reflect a clear notion of features or a direct mapping between 
input features and predictions. This absence of feature-based decision-making makes traditional 
explainability techniques ineffective for generative foundational models such as GPT-4.

Alternatively, we can adopt some pragmatic transparency practices, such as clear documentation 
made accessible to all relevant stakeholders, to foster a shared understanding and expectations 
regarding the model’s capabilities and usage.

The topic of explainability is a critical space to watch, especially as generative models become more 
complex and their outcomes become increasingly more difficult to rationalize, which may present 
unknown risk implications.

Promising research from Anthropic, OpenAI, and others suggests that sparse autoencoders—neural 
networks that activate only a few neurons at a time—could facilitate the identification of abstract 
and understandable patterns. This method could help explain the network's behavior by highlighting 
features that align with human concepts.

Final deployment
Assuming we have carefully gathered quantitative and qualitative feedback regarding the best 
model for the job, we can select our model and update our production environment to deploy and 
serve it. We will continue to use FastAPI for creating a web server to serve our model, and Docker 
to containerize our application. However, now that we have been introduced to the simplicity of 
LangChain, we will continue to leverage its simplified interface. Our existing CI/CD pipeline will 
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ensure streamlined automatic deployment and continuous application monitoring. This means 
that deploying our model is as simple as checking-in our latest code. We begin with updating our 
dependencies list:

1.	 Update the requirements: Update the requirements.txt file in your project to include 
the necessary libraries:

fastapi==0.68.0
uvicorn==0.15.0
openai==0.27.0
langchain==0.1.0

2.	 Update the Dockerfile: Modify your Dockerfile to ensure it installs the updated requirements 
and properly sets up the environment for running LangChain with FastAPI:

# Use an official Python runtime as a base image
FROM python:3.8-slim-buster

# Set the working directory in the container to /app
WORKDIR /app

# Copy the current directory contents into the container at /app
COPY . /app

# Install any needed packages specified in requirements.txt
RUN pip install --no-cache-dir -r requirements.txt

# Make port 80 available to the world outside this container
EXPOSE 80

# Define environment variable
ENV NAME World

# Run app.py when the container launches
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "80"]

3.	 Update the FastAPI application: Modify your FastAPI application to utilize Langchain for 
interacting with GPT-3.5. Ensure your OpenAI API key is securely stored and accessible to 
your application:

from fastapi import FastAPI, HTTPException, Request
from langchain.llms import OpenAI
import os

# Initialize FastAPI app
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app = FastAPI()

# Setup Langchain with GPT-3.5
llm = OpenAI(model _ name='text-davinci-003',
             temperature=0.7,
             max _ tokens=256,
             api _ key=os.environ['OPENAI _ API _ KEY'])

@app.post("/generate/")
async def generate _ text(request: Request):
    data = await request.json()
    prompt = data.get('prompt')
    if not prompt:
        raise HTTPException(status _ code=400,
            detail="Prompt is required")
    response = llm(prompt)
    return {"generated _ text": response}

Testing and monitoring

Once the model is deployed, perform necessary tests to ensure the setup works as expected. Continue 
to monitor the system’s performance, errors, and other critical metrics to ensure reliable operation.

By this point, we have updated our production environment to deploy and serve GPT-3.5, facilitating 
the generation of text based on the prompts received via the FastAPI application. This setup ensures 
a scalable, maintainable, and secure deployment of our new generative model. However, we should 
also explore some best practices regarding application reliability.

Maintenance and reliability

Maintaining reliability in our StyleSprint deployment is critical. As we employ Langchain with 
FastAPI, Docker, and CI/CD, it’s essential to set up monitoring, alerting, automatic remediation, 
and failover mechanisms. This section outlines a possible approach to ensure continuous operation 
and robustness in our production environment:

•	 Monitoring tools: Integrate monitoring tools within the CI/CD pipeline to continuously 
track system performance and model metrics. This step is fundamental for identifying and 
rectifying issues proactively.

•	 Alerting mechanisms: Establish alerting mechanisms to notify the maintenance team whenever 
anomalies or issues are detected. Tuning the alerting thresholds accurately is crucial to catch 
issues early and minimize false alarms.
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•	 Automatic remediation: Utilize Kubernetes’ self-healing features and custom scripts 
triggered by certain alerts for automatic remediation. This setup aims to resolve common 
issues autonomously, reducing the need for human intervention.

•	 Failover mechanisms: Implement a failover mechanism by setting up secondary servers 
and databases. In case of primary server failure, these secondary setups take over to ensure 
continuous service availability.

•	 Regular updates via CI/CD: Employ the CI/CD pipeline for managing, testing, and deploying 
updates to LangChain, FastAPI, or other components of the stack. This process keeps the 
deployment updated and secure, reducing the maintenance burden significantly.

By meticulously addressing each of these areas, you’ll be laying down a solid foundation for a reliable 
and maintainable StyleSprint deployment.

Summary
This chapter outlined the process of transitioning the StyleSprint generative AI prototype to a 
production-ready deployment for creating engaging product descriptions on an e-commerce platform. 
It started with setting up a robust Python environment using Docker, GitHub, and CI/CD pipelines 
for efficient dependency management, testing, and deployment. The focus then shifted to selecting a 
suitable pretrained model, emphasizing alignment with project goals, computational considerations, 
and responsible AI practices. This selection relied on both quantitative benchmarking and qualitative 
evaluation. We then outlined the deployment of the selected model using FastAPI and LangChain, 
ensuring a scalable and reliable production environment.

Following the strategies outlined in this chapter will equip teams with the necessary insights and 
steps to successfully transition their generative AI prototype into a maintainable and value-adding 
production system. In the next chapter, we will explore fine-tuning and its importance in LLMs. We 
will also weigh in on the decision-making process, addressing when it is more beneficial to fine-tune 
versus zero or few-shot prompting.



This part focuses on the practical applications of generative AI, including fine-tuning models for 
specific tasks, understanding domain adaptation, mastering prompt engineering, and addressing ethical 
considerations. It aims to provide hands-on insights and methodologies for effectively implementing 
and leveraging generative AI in various contexts with a focus on responsible adoption.

This part contains the following chapters:

•	 Chapter 5, Fine-Tuning Generative Models for Specific Tasks

•	 Chapter 6, Understanding Domain Adaptation for Large Language Models

•	 Chapter 7, Mastering the Fundamentals of Prompt Engineering

•	 Chapter 8, Addressing Ethical Considerations and Charting a Path toward Trustworthy Generative AI
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5
Fine-Tuning Generative Models 

for Specific Tasks

In our narrative with StyleSprint, we described using a pre-trained generative AI model for creating 
engaging product descriptions. While this model showed adeptness in generating diverse content, 
StyleSprint’s evolving needs require a shift in focus. The new challenge is not just about producing 
content but also about engaging in specific, task-oriented interactions such as automatically answering 
customer’s specific questions about the products described.

In this chapter, we introduce the concept of fine-tuning, a vital step in adapting a pre-trained model 
to perform specific downstream tasks. For StyleSprint, this means transforming the model from a 
versatile content generator to a specialized tool capable of providing accurate and detailed responses 
to customer questions.

We will explore and define a range of scalable fine-tuning techniques, comparing them with other 
approaches such as in-context learning. We will demonstrate advanced fine-tuning methods, including 
parameter-efficient fine-tuning and prompt tuning, to demonstrate how they can fine-tune a model’s 
abilities for specific tasks such as Q&A.

By the end of this chapter, we will have trained a language model to answer questions and do so in a way 
that aligns with StyleSprint’s brand guidelines. However, before we explore the mechanics of fine-tuning 
and its importance in our application, we will revisit the history of fine-tuning in the context of LLMs.

Foundation and relevance – an introduction to fine-tuning
Fine-tuning is the process of leveraging a model pre-trained on a large dataset and continuing the 
training process on a smaller, task-specific dataset to improve its performance on that task. It may 
also involve additional training that adapts a model to the nuances of a new domain. The latter is 
known as domain adaptation, which we will cover in Chapter 6. The former is typically referred to 
as task-specific fine-tuning, and it can be performed to accomplish several tasks, including Q&A, 
summarization, classification, and many others. For this chapter, we will focus on task-specific fine-
tuning to improve a general-purpose model’s performance when answering questions.
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For StyleSprint, fine-tuning a model to handle a specific task such as answering customer inquiries 
about products introduces unique challenges. Unlike generating product descriptions, which primarily 
involves language generation using an out-of-the-box pre-trained model, answering customer questions 
requires the model to have an extensive understanding of product-specific data and should have a 
brand-aware voice. Specifically, the model must accurately interpret and respond to questions about 
product features, sizes, availability, user reviews, and many other details. It should also produce answers 
consistent with StyleSprint’s distinct brand tone. This task requires both generalized natural language 
proficiency (from pre-training) and robust knowledge of product metadata and customer feedback, 
accomplished through fine-tuning.

Models such as GPT initially learn to predict text through an unsupervised learning process that 
involves being trained on wide-ranging and vast datasets. This pre-training phase exposes the model 
to a diverse array of texts, enabling it to gain a broad understanding of language, including syntax, 
grammar, and context, without any specific task-oriented guidance. However, fine-tuning applies 
task-oriented, supervised learning to refine the model’s capabilities to accomplish the specified 
task – specifically, semi-supervised learning, which, as described by Radford et al. (2018), involves 
adapting the model to a specific supervised task by exposing it to a dataset comprising input 
sequences (x1, ..., xm) and corresponding labels (y).

Throughout the chapter, we will detail the fine-tuning process, including how to selectively train the 
model on a curated dataset of product-related information and customer interactions, enabling it to 
respond with the informed, brand-aligned precision that customers expect. However, fine-tuning 
an LLM, which could have billions of parameters, would typically require an enormous number of 
resources and time. This is where advanced techniques such as Parameter-Efficient Fine-Tuning 
(PEFT) become particularly valuable in making fine-tuning accessible.

PEFT
Traditional fine-tuning methods become increasingly impractical as the model size grows due to the 
immense computational resources and time required to train and update all model parameters. For 
most businesses, including larger organizations, a classical approach to fine-tuning is cost-prohibitive 
and, effectively, a non-starter.

Alternatively, PEFT methods modify only a small subset of a model’s parameters, reducing the 
computational burden while still achieving state-of-the-art performance. This method is advantageous 
for adapting large models to specific tasks without extensive retraining.

One such PEFT method is the Low-Rank Adaptation (LoRA) methodology, developed by Hu et 
al. (2021).
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LoRA

The LoRA method focuses on selectively fine-tuning specific components within the Transformer 
architecture to enhance efficiency and effectiveness in LLMS. LoRA targets the weight matrices 
found in the self-attention module of the Transformer, which, as discussed in Chapter 3, are key to its 
functionality and include four matrices: wq (query), wk (key), wv (value), and wo (output). Although 
these matrices can be divided into multiple heads in a multi-head attention setting – where each head 
represents one of several parallel attention mechanisms that process inputs independently – LoRA 
treats them as singular matrices, simplifying the adaptation process.

LoRA’s approach involves adapting only the attention weights for downstream tasks, while the weights 
in the other component of the Transformer, the feed-forward network (FFN), are unchanged. This 
decision to focus exclusively on the attention weights and freeze the FFN is made for simplicity and 
parameter efficiency. By doing so, LoRA ensures a more manageable and resource-efficient fine-tuning 
process, avoiding the complexities and demands of retraining the entire network.

This selective fine-tuning strategy enables LoRA to effectively tailor the model for specific tasks while 
maintaining the overall structure and strengths of the pre-trained model. This makes LoRA a practical 
solution for adapting LLMs to new tasks with a reduced computational burden without requiring 
comprehensive parameter updates across the entire model (Liu et al., 2021).

Building upon the foundation of LoRA, Adaptive Low-Rank Adaptation (AdaLoRA), as introduced 
in a study by Liu et al. (2022), represents a further advancement in PEFT methods. The key difference 
between LoRA and AdaLoRA lies in (as the name suggests) its adaptiveness. While LoRA applies 
a consistent, low-rank approach to fine-tuning across the model, AdaLoRA tailors the updates to 
the needs of each layer, offering a more flexible and potentially more effective way to fine-tune large 
models for specific tasks.

AdaLoRA

AdaLoRA’s key innovation lies in its adaptive allocation of the parameter budget among the weight 
matrices of the pre-trained model. Many PEFT methods tend to distribute the parameter budget 
evenly across all pre-trained weight matrices, potentially neglecting the varying importance of different 
weight parameters. AdaLoRA overcomes this by assigning importance scores to these weight matrices 
and allocating the parameter budget accordingly. Importance scores in the context of AdaLoRA are 
metrics used to determine the significance (or importance) of different weight parameters in a model, 
guiding the allocation of the parameter budget more effectively during fine-tuning.

Note
Parameter budget refers to the predefined limit on the number of additional parameters that 
can be introduced during the fine-tuning of a pre-trained model. This budget is set to ensure 
that the model’s complexity does not increase significantly, which can lead to challenges such 
as overfitting, increased computational costs, and longer training times.
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Additionally, AdaLoRA applies singular value decomposition (SVD) to efficiently organize the 
incremental updates made during the model’s fine-tuning process. SVD allows for the effective pruning 
of singular values associated with less critical updates, reducing the overall parameter budget required 
for fine-tuning. It is important to note that this method also avoids the need for computationally 
intensive exact computations, making the fine-tuning process more efficient.

AdaLoRA has been empirically tested across various domains, including natural language processing, 
question-answering, and natural language generation. Extensive experiments have demonstrated 
its effectiveness in improving model performance, particularly in question-answering tasks. The 
adaptability and efficiency of AdaLoRA make it an ideal choice for applications requiring precise and 
efficient model adjustments for complex tasks.

In the case of StyleSprint, AdaLoRA presents an opportunity to fine-tune its language model for 
answering customer questions without the considerable overhead that would be incurred by traditional 
fine-tuning, which would require adjusting all of the model parameters. By adopting AdaLoRA, 
StyleSprint can efficiently adapt its model to handle nuanced customer inquiries by adjusting 
significantly fewer parameters. Specifically, AdaLoRA’s adaptive allocation of parameter budgets 
means that StyleSprint can optimize its model for the specific nuances of customer queries without 
using extensive computational resources.

By the end of this chapter, we will have fine-tuned an LLM using AdaLoRA for our Q&A task. However, 
we should first decide whether fine-tuning is truly the right approach. Prompt-based LLMs offer a 
viable alternative known as in-context learning, where the model can learn from examples given in 
the prompt, meaning that the prompt would contain the customer’s question paired with a few key 
historical examples of how other questions were answered. The model can infer from the examples 
how to answer the question at hand in a way that is consistent with the examples. In the next section, 
we will explore the benefits and drawbacks of in-context learning to help us determine whether fine-
tuning is the best approach to enable a model to answer very specific questions.

In-context learning
In-context learning is a technique where the model generates responses based on a few examples 
provided in the input prompt. This method leverages the model’s pre-trained knowledge and the 
specific context or examples included in the prompt to perform tasks without the need for parameter 
updates or retraining. The general approach, detailed in Language Models are Few-Shot Learners by 
Brown et al. (2020), describes how the extensive pre-training of these models enables them to perform 
tasks and generate responses based on a limited set of examples paired with instructions embedded 
within prompts. Unlike traditional methods that require fine-tuning for each specific task, in-context 
learning allows the model to adapt and respond based on the additional context provided at inference.

Central to in-context learning is the concept of few-shot prompting, which is critical for enabling models 
to adapt to and perform tasks without additional training data, relying instead on their pre-trained 
knowledge and the context provided within input prompts. For context, we’ll describe how an LLM 
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typically works, which is known as the zero-shot approach, and contrast it to in-context learning, 
which uses the few-shot approach:

•	 Zero-shot prompting: Models such as GPT respond to instruction based on their vast 
pre-training and the specific task or instruction described in the input prompt. These models 
estimate a conditional probability distribution over possible outputs for a given input sequence, 
x. The model calculates the likelihood of a potential output sequence, y, expressed as P(y|x). 
This computation is performed without prior examples specific to the task, relying entirely 
on the model’s general pre-training. Meaning, the zero-shot approach has no specific context 
apart from its general knowledge. For example, if we were to ask Are winter coats available in 
children’s sizes?, the model could not provide a specific answer about StyleSprint’s inventory. It 
could only provide some generic answer.

•	 Few-shot prompting: Using the few-shot approach, we provide the model with a prompt 
paired with a few examples. These examples are concatenated to the prompt (represented as 
x) to form an extended input sequence. So, our question Are winter coats available in children’s 
sizes? might be paired with a few examples such as the following:

	� Q: Do you sell anything in children’s sizes?

     �A: Any items for children are specifically listed on the 
“StyleSprint for Kids” page.

	� Q: What do you offer for kids?

     �A: StyleSprint offers a variety of children’s fashions on its 
“StyleSprint for Kids” page.

The LLM then computes the probability of generating a specific output sequence, y, given this extended 
input sequence, x. Mathematically, this can be conceptualized as the model estimating the joint 
probability distribution of y and x (where x includes both the prompt and the few-shot examples, as 
demonstrated previously). The model uses this joint probability distribution to generate a response 
consistent with the instructions paired with the examples given in the input sequence.

In both cases, the model’s ability to adapt its output based on the given context, whether with zero examples 
or a few, demonstrates the flexibility and sophistication of its underlying architecture and training. 
However, the few-shot approach allows the LLM to learn from the very specific examples provided.

Let’s consider how StyleSprint could apply in-context learning to answer customer queries. Performance 
using in-context learning (or the few-shot approach) consistently reflects significant gains over zero-
shot behavior (Brown et al., 2020). We can expand our prior example to where a customer asks about 
the availability of a specific product. Again, the StyleSprint team could systematically append a few 
examples to each prompt as follows.

Here is the prompt: Respond to the following {question} about product 
availability.
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These are some examples:

•	 Example 1:

	� Customer query: Do you carry black leather handbags?

	� AI response: Give me a moment while I retrieve information about 
that particular item.

•	 Example 2:

	� Customer query: Do you have the silk scarves in blue?

	� AI response: Let me search our inventory for blue silk scarves.

StyleSprint can provide examples that effectively help the model understand the nature of the inquiry 
and generate a response that is informative and aligned with the company’s policies and product 
offerings. In this example, we see that the responses are intended to be paired with a search component.  
This is a common approach and can be accomplished using a technique called Retrieval Augmented 
Generation (RAG), which is a component that facilitates retrieval of real-time data to inform the 
generated response. Combining a few-shot in-context learning approach with RAG could ensure that 
the system provides a logical and specific answer.

In-context learning using a few-shot approach allows the model to rapidly adapt to various customer 
queries using a limited set of examples. When augmented with RAG, StyleSprint could potentially 
satisfy their use case and reduce the time and resources needed to fine-tune. However, this approach 
must be weighed against the depth of specialization and consistency of task-specific fine-tuning, which, 
as described, could also produce highly accurate answers that fit the brand tone.

In the next section, we will formulate metrics that help us draw a direct comparison to guide StyleSprint 
in making an informed decision that best suits its customer service objectives and operational framework.

Fine-tuning versus in-context learning
We learned how in-context learning could allow StyleSprint’s model to handle a diverse range of 
customer queries without requiring extensive retraining. Specifically, a few-shot approach combined 
with RAG could facilitate quick adaptation to new inquiries, as the model can generate responses based 
on a few examples. However, the effectiveness of in-context learning heavily relies on the quality and 
relevance of the examples provided in the prompts. Its success would also rely on the implementation 
of RAG. Moreover, without fine-tuning, responses may lack consistency or may not adhere as strictly 
to StyleSprint’s brand tone and customer service policies. Finally, depending entirely on a generative 
model without fine-tuning may inadvertently introduce bias, as discussed in Chapter 4.

In practice, we have two very comparable and viable approaches. However, to make an informed 
decision, we should first perform a more in-depth comparison using quantitative methods.
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To impartially assess the efficacy of in-context learning compared to fine-tuning, we can measure 
the quality and consistency of the generated responses. We can accomplish this using established 
and reliable metrics to compare outcomes from each of the approaches. Like prior evaluations, we 
will want to apply quantitative and qualitative methods applied across the following key dimensions:

•	 Alignment with human judgment: We can again apply semantic similarity to provide a 
quantitative measure of how often the model’s responses are correct or relevant based on a 
reference answer written by a human.

StyleSprint’s brand communication experts can review a subset of the responses to provide 
a qualitative evaluation of the response accuracy and alignment with brand tone and voice.

•	 Consistency and stability: It is important to measure the degree to which questions are 
answered consistently each time despite minor variations in how the question is posed. Again, 
we can leverage semantic similarity to compare each new output to the prior when the input 
is held constant.

In addition to evaluating the quality of model responses for each approach, we can also directly 
compare the operational and computational overhead required for each.

For fine-tuning, we will need to understand the overhead involved in training the model. While 
the PEFT method will significantly reduce the training effort, there could be considerably more 
infrastructure-related costs compared to in-context learning, which requires no additional training. 
Alternatively, for in-context learning, commoditized models such as OpenAI’s GPT-4 have a per-token 
cost model. StyleSprint must also consider the cost of tokens required to embed a sufficient number 
of few-shot examples in the prompt.

In both cases, StyleSprint will incur some operational costs to create best-in-class examples written 
by humans that can be used as a “gold standard” in either the few-shot approach or for additional 
model training.

By conducting these comparative tests and analyzing the results, StyleSprint will gain valuable insights 
into which approach – in-context learning or fine-tuning – best aligns with its operational goals and 
customer service standards. This data-driven evaluation will inform the decision on the optimal AI 
strategy for enhancing their customer service experience. We will implement these comparisons in 
the practice project that follows.

Practice project: Fine-tuning for Q&A using PEFT
For our practice project, we will experiment with AdaLoRA to efficiently fine-tune a model for a 
customer query and compare it directly to the output of a state-of-the-art (SOTA) model using 
in-context learning. Like the previous chapter, we can rely on a prototyping environment such as 
Google Colab to complete the evaluation and comparison of the two approaches. We will demonstrate 
how to configure model training to use AdaLoRA as our PEFT method.



Fine-Tuning Generative Models for Specific Tasks112

Background regarding question-answering fine-tuning

Our project utilizes the Hugging Face training pipeline library, a widely recognized resource in the 
machine learning community. This library offers a variety of pre-built pipelines, including one for 
question-answering, which allows us to fine-tune pre-trained models with minimal setup. Hugging 
Face pipelines abstract much of the complexity involved in model training, making it accessible 
for developers to implement advanced natural language processing tasks directly and efficiently In 
particular, this pipeline behaves as an interface to a transformer model with a specific head for question-
answering tasks. Recall that when we fine-tune a transformer model, we keep the architecture of the 
model – including the self-attention mechanism and the transformer layers – but we train the model’s 
parameters on a specific task, which, in this case, results in a model refined specifically to answer 
questions. Recall our practice project in Chapter 3 where the resulting model was a translator; we 
used a translator head to accomplish translation from English to French. For this project, the “head” 
is aligned to learn patterns in question-answering data.

However, when using a question-answer training pipeline, it is important to understand that the 
model does not simply memorize question-answer pairs, it learns the connection between questions 
and answers. Moreover, to answer appropriately, the model cannot rely entirely on training. It also 
requires additional context as input to compose a relevant answer. To understand this further, we 
decompose the model inferencing step as follows:

1.	 When feeding a question to a model, we must also include context relevant to the topic.

2.	 The model then determines the most relevant part of the context that answers the question. 
It does this by assigning probability scores to each token (word or sub-word) in the context.

3.	 The model “thinks” of the context as a potential source for the answer and assigns each token two 
scores: one score for being the start of the answer, and another for being the end of the answer.

4.	 The token with the highest “start” score and “end” score is then chosen to form the answer 
span. The span is what is presented to the user.

To provide a concrete example, if we ask the model, Does StyleSprint have any leather 
jackets? and provide a context of StyleSprint sells a variety of coats, jackets 
and outerwear, the model will process this context and identify that the most likely answer is 
something like Yes, StyleSprint sells a variety of outerwear. However, if the 
answer to a question is not included in the provided context, the model cannot generate a reliable 
answer. Additionally, if the context is too unspecific, the model may provide a more generic answer. 
Like in-context learning, the fine-tuned approach for question-answering requires relevant context. 
This means that, in practice, the model must be integrated with a search component that can retrieve 
additional context to pair with each question.

Consider our leather jacket example. When a question is received, the system could perform a search of 
its knowledge base and retrieve any contextual information relevant to a leather jacket (e.g., a paragraph 
about outerwear). Again, since the model was trained to answer questions in a way that aligns with 
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the brand tone, it will extract the relevant information from the context provided to formulate an 
appropriate answer. Not only will integration with search provide the model with the context it needs 
but it will also allow the model to have up-to-date and real-time information.

Additionally, we might incorporate a confidence threshold, where the model only gives an answer if it 
assigns a high enough probability to the start and end tokens. If the highest probability is below this 
threshold, we might say the model does not know, or request more information. Overall, the model 
efficacy relies heavily on the quality and size of the training data as well as the relevance of the context 
with regard to the questions posed.

Now that we have a better understanding of how fine-tuning for question-answering works and what 
to expect when using the question-answering pipeline from Hugging Face, we can begin to write 
our implementation.

Implementation in Python

First and foremost, we install the required libraries:

!pip install transformers peft sentence-transformers

Then, we import the question-answering modules from the transformers library. For our project, 
we will use Google’s Flan T5 (small), which is considered a SOTA alternative to GPT 3.5. As one of 
our goals continues to be to measure the performance versus efficiency trade-off, we begin with the 
smallest version of Flan T5, which has 80M parameters. This will enable faster training and more 
rapid iteration. However, please note that even a small model trained over a small number of epochs 
will require a high-RAM runtime environment:

from transformers import (
    AutoModelForQuestionAnswering, AutoTokenizer)
model_name = " google/flan-t5-small"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForQuestionAnswering.from_pretrained(model_name)

With the pre-trained model instantiated, we can now configure the model to adapt its training process 
to use AdaLoRA, which, as we’ve learned, is specifically designed to allocate the parameter budget 
efficiently during the fine-tuning process:

from peft import AdaLoraConfig
# Example configuration; adjust parameters as needed
adapter_config = AdaLoraConfig(target_r=16)
model.add_adapter(adapter_config)
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As discussed, fine-tuning relies heavily on the quality and size of the training data. In the StyleSprint scenario, 
the company could aggregate question-answer pairs from its FAQ page, social media, and customer service 
transcripts. For this exercise, we will construct a simple dataset that looks similar to the following:

demo_data = [{
"question": "What are the latest streetwear trends available at 
Stylesprint?",
  "answer": "Stylesprint's latest streetwear collection includes 
hoodies, and graphic tees, all inspired by the latest hip-hop fashion 
trends."
...
}]

However, in order to integrate our dataset with the question-answer pipeline, we should first understand 
the Trainer class. The Trainer class in the Hugging Face transformers library expects the training 
and evaluation datasets to be in a specific format, usually as a PyTorch Dataset object, not just as 
simple lists of dictionaries. Further, each entry in the dataset needs to be tokenized and structured 
with the necessary fields such as input_ids, attention_mask, and, for question-answering 
tasks, start_positions and end_positions. Let us explore these in more detail:

•	 input_ids: This is a sequence of integers that represent the input sentence in the model. 
Each word or sub-word in the sentence is converted into a unique integer or ID. Recall from 
earlier chapters that this process is known as tokenization. The words or tokens are looked 
up in the vocabulary of the language model and the corresponding integer is then used in the 
model. For example, a sentence such as I love Paris might be converted into something like 
[101, 354, 2459].

•	 attention_mask: An attention mask is a sequence of binary values where 1s indicate real 
tokens and 0s indicate padding tokens. In other words, in the places where 1s are present, the 
model will understand that those places need attention and the places with 0s will be ignored 
by the model. This is crucial when dealing with sentences of varying lengths and dealing with 
batches of sentences in training models.

•	 start_positions and end_positions: These are for question-answering tasks. They 
represent the indices of the start and end tokens of the answer in the tokenized form of the 
context. For example, in the context Paris is the capital of France, if the question is What is the 
capital of France? and the answer given is Paris, after tokenization, start_position and 
end_position will correspond to the index of Paris in the context.

With that understanding, we can create a class that adapts our dataset to meet the expectations of 
the trainer, as follows:

from torch.utils.data import Dataset

class StylesprintDataset(Dataset):
   def __init__(self, tokenizer, data):
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       tokenizer.pad_token = tokenizer.eos_token
       self.tokenizer = tokenizer
       self.data = data

For the complete custom dataset class code, visit this book’s GitHub repository at https://github.
com/PacktPublishing/Generative-AI-Foundations-in-Python.

With the training set prepared and our pipeline configured to apply the AdaLoRA method, we can 
finally move to the training step. For this project, we will configure the training to run for just a few 
epochs, but in the StyleSprint scenario, a much more robust training process would be required:

from transformers import Trainer, TrainingArguments

# Split the mock dataset into training and evaluation sets (50/50)
train_data = StylesprintDataset(
    tokenizer, demo_data[:len(demo_data)//2])
eval_data = StylesprintDataset(
    tokenizer, demo_data[len(demo_data)//2:])

# Training arguments
training_args = TrainingArguments(
    output_dir="./results",
    num_train_epochs=10,
    per_device_train_batch_size=16,
    per_device_eval_batch_size=64,
    warmup_steps=500,
    weight_decay=0.01,
    logging_dir="./logs",
    logging_steps=10,
)

# Initialize the Trainer
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=train_data,
    eval_dataset=eval_data
)

# Start training
trainer.train()

For our simple experiment, we do not expect a highly performant model; however, we can learn how 
to interpret the training output, which describes how well the model performed on the evaluation 
samples. The Trainer class will output a training summary that includes the loss metric.

https://github.com/PacktPublishing/Generative-AI-Foundations-in-Python
https://github.com/PacktPublishing/Generative-AI-Foundations-in-Python
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Training loss

Training loss is a measure of how well the model is performing; a lower loss indicates better performance. 
In many deep learning models, especially those dealing with complex tasks such as language 
understanding, it’s common to start with a relatively high loss. The expectation is that this value 
should decrease as training progresses.

In the early stages of training, a high loss isn’t a cause for alarm as it commonly decreases as the 
model continues to learn. However, if the loss remains high, this signals that additional training 
may be needed. If the loss continues to be high after prolonged training, the learning rate and other 
hyperparameters may require adjustment, as an inappropriate learning rate can impact the model’s 
learning effectiveness. Moreover, the quality and quantity of your training data should be evaluated as 
insufficient data can hinder the training. For example, as we only use a few examples for the experiment, 
we expect a relatively high loss.

The next step is to use our newly fine-tuned model to infer or predict. We should also secure our 
trained model parameters so we can reuse it without retraining:

import torch

# save parameters
model.save_pretrained("./stylesprint_qa_model")

def ask_question(model, question, context):
   # Tokenize the question and context
   inputs = tokenizer.encode_plus(question, context,
        add_special_tokens=True, return_tensors="pt")

   # Get model predictions
   with torch.no_grad():
       outputs = model(**inputs)

   # Get the start and end positions
   answer_start_scores = outputs.start_logits
   answer_end_scores = outputs.end_logits

   # Find the tokens with the highest `start` and `end` scores
   answer_start = torch.argmax(answer_start_scores)
   answer_end = torch.argmax(answer_end_scores) + 1

   # Convert the tokens to the answer string
   answer = tokenizer.convert_tokens_to_string(
        tokenizer.convert_ids_to_tokens(
            inputs["input_ids"][0][answer_start:answer_end]
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            )
        )
   return answer

question = "What is the return policy for online purchases?"
context = """Excerpt from return policy returned from search."""

answer = ask_question(model, question, context)
print(answer)

As discussed, we introduce context along with a question to the model, so that it can identify which 
fragment of the context responds most appropriately to the query. Consequently, we may want to 
consider integrating a vector search system (such as RAG) to automatically identify relevant documents 
from large datasets based on semantic similarities to a query. These search results may not provide 
specific answers, but the trained QA model can extract more precise answers from the results.

With this hybrid approach, the vector search system first retrieves documents or text segments that 
are semantically related to the query. The QA model then analyzes this context to identify the precise 
answer that aligns with StyleSprint’s guidelines and expectations.

Evaluation of results

To evaluate our model outcomes, StyleSprint might apply the qualitative and quantitative approaches 
we have discussed in the chapter already. For the purpose of our experiment, we can measure the 
output of the model to a golden standard response using a simple measure for semantic similarity:

from sentence_transformers import SentenceTransformer, util
import pandas as pd

# Example of a gold standard answer written by a human
gs = "Our policy at Stylesprint is to accept returns on online 
purchases within 30 days, with the condition that the items are unused 
and remain in their original condition."
# Example of answer using GPT 3.5 with in-context learning reusing a 
relevant subset of the training data examples
gpt_35 = "Stylesprint accepts returns within 30 days of purchase, 
provided the items are unworn and in their original condition."

# Load your dataset
dataset = pd.DataFrame([
   (gs, gpt_35, answer)
])# pd.read_csv("dataset.csv")
dataset.columns = ['gold_standard_response',
    'in_context_response', 'fine_tuned_response']
# Load a pre-trained sentence transformer model
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eval_model = SentenceTransformer('all-MiniLM-L6-v2')

# Function to calculate semantic similarity
def calculate_semantic_similarity(model, response, gold_standard):
    response_embedding = model.encode(
        response, convert_to_tensor=True)
    gold_standard_embedding = model.encode(gold_standard,
        convert_to_tensor=True)
    return util.pytorch_cos_sim(response_embedding,
        gold_standard_embedding).item()

# Measure semantic similarity
dataset['in_context_similarity'] = dataset.apply(
    lambda row:calculate_semantic_similarity(
        eval_model, row['in_context_response'],
        row['gold_standard_response']
    ), axis=1)
dataset['fine_tuned_similarity'] = dataset.apply(
    lambda row:calculate_semantic_similarity(
        eval_model, row['fine_tuned_response'],
        row['gold_standard_response']
    ), axis=1)

# Print semantic similarity
print("Semantic similarity for in-context learning:", 
    dataset['in_context_similarity'])
print("Semantic similarity for fine-tuned model:", 
    dataset['fine_tuned_similarity'])

The results of our evaluation are as follows:

PEFT Flan T5 GPT 3.5T
Fine-tuned In-context

Semantic Similarity 0.543 0.91

Table 5.1: Semantic similarity scores for fine-tuned Flan and GPT 3.5 Turbo, respectively

Undoubtedly, the in-context learning arrived at an answer that was much closer to our gold standard 
reference. However, the fine-tuned model was not far behind. This tells us that with a more robust 
training dataset and considerably more epochs, the fine-tuned model could be comparable to GPT 
3.5. With more iteration and experimentation, StyleSprint could have a very robust fine-tuned model 
to answer very specific questions for its customers.
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Summary
In this chapter, we focused on the strategic decision-making process between fine-tuning and in-context 
learning for StyleSprint’s AI-driven customer service system. While in-context learning, particularly 
few-shot learning, offers adaptability and resource efficiency, it may not consistently align with StyleSprint’s 
brand tone and customer service guidelines. This method relies heavily on the quality and relevance of 
the examples provided in the prompts, requiring careful crafting to ensure optimal outcomes.

On the other hand, PEFT methods such as AdaLoRA, offer a more focused approach to adapt a 
pre-trained model to the specific demands of customer service queries. PEFT methods modify only 
a small subset of a model’s parameters, reducing the computational burden while still achieving high 
performance. This efficiency is crucial for real-world applications where computational resources and 
response accuracy are both key considerations.

Ultimately, the choice between in-context learning and fine-tuning is not just a technical decision but 
also a strategic one, deeply intertwined with the company’s operational goals, resource allocation, and the 
desired customer experience. The chapter suggests conducting comparative tests to assess the efficacy of 
both approaches, evaluating outcomes at scale through reliable metrics. This data-driven evaluation will 
inform StyleSprint’s decision on the optimal AI strategy for enhancing their customer service experience.

In summary, we now have a more complete understanding of the implications of fine-tuning versus 
in-context learning in LLMs, specifically in the context of customer service. It highlights the need for a 
company like StyleSprint to make a well-informed strategic decision, balancing the depth of specialization 
and consistency offered by fine-tuning against the adaptability and efficiency of in-context learning.

In the next chapter, we will explore PEFT for domain adaptation where the outcome of our training 
is a general-purpose model refined to understand a highly specific domain like finance or law.
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6
Understanding Domain 

Adaptation for Large  
Language Models

In the previous chapter, we examined how Parameter-Efficient Fine-Tuning (PEFT) enhances 
large language models (LLMs) for specific tasks such as question-answering. In this chapter, we will 
be introduced to domain adaptation, a distinct fine-tuning approach. Unlike task-specific tuning, 
domain adaptation equips models to interpret language that’s unique to specific industries or domains, 
addressing the gap in LLMs’ understanding of specialized language.

To illustrate this, we’ll introduce Proxima Investment Group, a hypothetical digital-only investment firm 
aiming to adapt an LLM to its specific financial language using internal data. We’ll demonstrate how 
modifying the LLM to process the specific terminology and nuances typical in Proxima’s environment 
enhances the model’s relevance and effectiveness in the financial domain.

We’ll also explore the practical steps Proxima might take, such as selecting relevant internal datasets 
for training, applying PEFT methods such as Low-Rank Adaptation (LoRA) to adapt the model 
efficiently, and using masking techniques to refine the model’s comprehension. Then, we’ll explore 
how Proxima can evaluate the success of this domain adaptation, assessing the model’s performance 
in tasks such as analyzing financial trends, responding to client inquiries, and generating reports that 
align with Proxima’s internal standards and market position.

By the end of this chapter, we will clearly understand the theoretical underpinnings of domain 
adaptation and its real-world application, particularly in a complex sector such as finance, where the 
model’s depth of domain understanding can significantly impact business outcomes.

Let’s begin by demystifying the concept, exploring its technical underpinnings, and discussing its 
importance in accomplishing domain-specific business objectives.
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Demystifying domain adaptation – understanding its 
history and importance
In the context of generative LLMs, domain adaptation specifically tailors models such as BLOOM, 
which have been pre-trained on extensive, generalized datasets (such as news articles and Wikipedia 
entries) for enhanced understanding of texts from targeted sectors, including biomedical, legal, and 
financial fields. This type of refinement can be pivotal as LLMs, despite their vast pre-training, may 
not inherently capture the intricate details and specialized terminology inherent to these domains. 
This adaptation involves a deliberate process of realigning the model’s learned patterns to the linguistic 
characteristics, terminologies, and contextual nuances prevalent in the target domain.

Domain adaptation operates within the ambit of transfer learning. In this broader paradigm, a 
model’s learnings from one task are repurposed to improve its efficacy on a related yet distinct task. 
This approach capitalizes on the model’s pre-learned features to improve its efficiency and accuracy 
on the subsequent task, markedly reducing its reliance on large volumes of domain-specific data and 
computational resources. Specifically, we begin with a model that’s been trained on broad datasets and 
use it as a starting point to adapt to specialized domains thereby augmenting their accuracy, relevance, 
and applicability to more targeted use cases.

In practice, several methodologies can be employed to tailor the model to specific domains, including 
the following:

•	 Continued pre-training: The model undergoes additional pre-training on domain-specific 
corpora, allowing its parameters to be adapted incrementally to the target domain’s linguistic 
features, as highlighted in research by Gururangan et al. 2020.

•	 Intermediate task training: Here, the model is trained on intermediate tasks, utilizing domain-
specific data before being fine-tuned for downstream applications. This step facilitates a more 
robust adaptation to the domain (Pruksachatkun et al., 2020).

•	 Data augmentation: Techniques such as back translation (Xie et al., 2019) and token 
replacement (Anaby-Tavor et al., 2020) are leveraged to generate synthetic domain-specific 
training examples from limited actual data:

	� Back translation entails translating an existing text from one language (for example, English) 
into another (for example, French) and then translating it back to the original language. This 
process generates paraphrased versions of the original text while preserving its semantics.

	� Token replacement involves altering individual words within a sentence to generate new 
sentences. This alteration usually aims to preserve the semantic meaning of the original 
sentence while introducing variations.

•	 Multi-task learning: This framework concurrently optimizes the model for both generic and 
domain-specific tasks during the adaptation phase, as demonstrated by Clark et al. 2019.
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As domain adaptation techniques evolve, they increasingly enhance model performance in specialized 
fields, even with reduced amounts of domain-specific data. As discussed in Chapter 4, more recent 
developments have focused on the computational efficiency of these techniques. Adaptation methods 
such as LoRA facilitate significant model adjustments with minimal parameter changes without 
requiring comprehensive retraining. It is important to note that a model's performance will always 
vary based on various factors like the quality of the dataset, available computational resources, and 
other implementation details.

Now that we have some insight into domain adaptation techniques and their focus on computational 
efficiency, we can apply these concepts practically. Our practice project will leverage BLOOM, a state-
of-the-art, open source LLM, to demonstrate domain adaptation for the finance sector. Leveraging 
PEFT, we aim to fine-tune BLOOM with minimal computational resources, illustrating the practical 
application of these advanced adaptation methods in enhancing model performance within the 
finance domain.

Practice project: Transfer learning for the finance domain
This project aims to fine-tune BLOOM on a curated corpus of specific documents to imbue it with 
the ability to interpret and articulate concepts specific to Proxima and its products.

Our methodology is inspired by strategies for domain adaptation across various fields, including 
biomedicine, finance, and law. A noteworthy study conducted by Cheng et al. in 2023 called Adapting 
Large Language Models via Reading Comprehension presents a novel approach for enhancing LLMs’ 
proficiency in domain-specific tasks. This approach repurposed extensive pre-training corpora into 
formats conducive to reading comprehension tasks, significantly improving the models’ functionality 
in specialized domains. In our case, we will apply a similar but simplified approach to continued 
pre-training by fine-tuning the pre-trained BLOOM model using a bespoke dataset specific to Proxima, 
effectively continuing the model’s training. This process adjusts the model parameters incrementally 
to ensure that it understands the language unique to Proxima’s products and offerings better.

Training methodologies for financial domain adaptation

Four our continued training strategy, we’ll employ causal language modeling (CLM). This approach is 
part of a broader set of training methodologies that optimize model performance for various objectives. 
Before moving to implementation, let's try to disambiguate our chosen approach from other popular 
strategies to better understand the CLM methodology:

•	 Masked Language Modeling(MLM): A cornerstone of Transformer-based models such as 
BERT, MLM randomly masks parts of the input text and challenges the model to predict the 
masked tokens. By considering the entire context around the mask (both before and after), 
MLM enables a model to develop a bidirectional understanding of language, enriching its 
grasp of context and semantics.
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•	 Next-Sentence Prediction(NSP): This methodology further broadens a model’s narrative 
understanding by training it to discern whether two sentences logically follow each other. 
NSP is instrumental in teaching models about text structure and coherence, enabling them to 
construct and comprehend logical sequences within larger bodies of text.

•	 CLM: Our chosen path for BLOOM’s adaptation diverges here, embracing CLM for its focused, 
sequential prediction capabilities. Unlike MLM, which looks both ways (before and after the 
masked token), CLM adopts a unidirectional approach, predicting each subsequent token based 
solely on the preceding context. This method is intrinsically aligned with natural language 
generation, making it especially suitable for crafting coherent, contextually rich narratives in 
the target domain.

In selecting CLM for BLOOM’s adaptation, we’ll extend the model’s generative capabilities to produce 
text sequences that are not only logically structured but also deeply embedded with the nuance of 
the target domain. CLM’s unidirectional nature ensures that each token that’s generated is informed 
by a cohesive understanding of the preceding text, enabling the model to generate detailed, accurate, 
and domain-specific texts. 

Once fine-tuning is complete, we can evaluate the efficacy of the domain-adapted BLOOM model 
based on its proficiency in generating contextually relevant and domain-specific narratives. We’ll 
compare the adapted model’s performance against the original model with a special focus on the 
model’s fluency, accuracy, and overall comprehension of the target domain.

As we’ve done previously, we’ll leverage Google Colab for our initial prototyping phase. As Chapters 4 
and 5 described, Google Colab offers a preconfigured environment that simplifies the process of testing 
our methodologies before we consider promoting them to production environments. All the code 
in this chapter is available in the Chapter 6 folder of this book’s GitHub repository (https://
github.com/PacktPublishing/Generative-AI-Foundations-in-Python).

We’ll begin with the initial setup, which involves loading a smaller variation of BLOOM-1b1 using the 
Transformers library. We’ll also import the methods that we’ll need to apply PEFT. For this example, 
we’ll rely on a few libraries that can be installed as follows:

pip install sentence-transformers transformers peft datasets

Once installed, we can begin importing:

from transformers import (
    AutoTokenizer, AutoModelForCausalLM)
from peft import AdaLoraConfig, get_peft_model

The next step is to load the tokenizer and model:

tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-1b1")
model = AutoModelForCausalLM.from_pretrained(
    "bigscience/bloom-1b1")

https://github.com/PacktPublishing/Generative-AI-Foundations-in-Python
https://github.com/PacktPublishing/Generative-AI-Foundations-in-Python
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As discussed previously, we’re incorporating PEFT for efficient adaptation:

adapter_config = AdaLoraConfig(target_r=16)
model.add_adapter(adapter_config)

The PEFT technique, specifically through AdaLoraConfig, allows us to introduce a compact, 
efficient layer so that we can adapt the model to new contexts – here, the finance domain – with a 
significantly reduced number of trainable parameters:

model = get_peft_model(model, adapter_config)
model.print_trainable_parameters()

We must integrate the adapter to finalize the PEFT model setup, effectively creating a model variant 
that’s optimized for our domain-specific training while focusing on efficiency. We can quantify this 
by examining the number of trainable parameters our model will use:

trainable params: 1,769,760 || all params: 1,067,084,088 || 
trainable%: 0.1658500974667331

The preceding code provides us with the following information:

•	 Trainable parameters: 1,769,760

•	 Total parameters in the model: 1,067,084,088

•	 Percentage of trainable parameters: 0.166%

This means that out of over 1 billion parameters in the BLOOM-1b1 model, only about 1.77 million 
parameters are being fine-tuned for the finance domain adaptation. This small percentage (0.166%) 
of trainable parameters highlights the efficiency of PEFT, allowing significant model adaptability with 
minimal adjustments. This is crucial for practical applications as it reduces both computational costs 
and the time required for training.

Next, we’ll move on to preparing the data. We’ll assume we have assembled texts encompassing 
the breadth of knowledge about specialized Proxima products and offerings such as the Proxima 
Passkey. CLM training requires distinct testing and training phases to evaluate the model’s ability to 
accurately predict the next token in a sequence. This ensures it generalizes well beyond the training 
data to unseen text. During training, the loss calculation measures the difference between the model’s 
predicted token probabilities and the actual tokens. It guides the model to adjust its parameters to 
minimize this loss, improving its predictive accuracy over iterations. As such, we must define training 
and testing texts as our dataset. An example dataset is included in this book’s GitHub repository 
(linked earlier in the chapter).

dataset = load_dataset("text",
    data_files={"train": "./train.txt",
        "test": "./test.txt"}
    )
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Next, we must apply preprocessing and tokenization. Texts are cleaned, standardized, and then converted 
into a numerical format (tokens) that the model can process. We must also truncate or pad texts to 
fit the model’s input size constraints and prepare labels for CLM training, where the model learns 
to predict each subsequent token. Truncation and padding are preprocessing steps that are used to 
standardize the length of input texts for machine learning models, particularly those with fixed input 
size constraints like many language models. Truncation removes parts of the text to shorten inputs 
that exceed the model’s maximum length, ensuring they fit within the specified size limit. Padding 
adds filler values (often zeros) to shorter inputs to extend them to the required length, allowing for 
consistent input dimensions across the dataset. Consistent input dimensions are necessary to ensure 
uniformity in matrix operations and computations across the entire dataset since LLMs, like other 
models that rely on deep learning, process inputs through layers of functions that require fixed-size 
vectors or matrices. In this case, we’ll set the sequence length to a maximum of 512 tokens so that it 
aligns with the model’s architecture:

def preprocess_function(examples):
    inputs = tokenizer(examples["text"], truncation=True,
        padding="max_length", max_length=512)
    inputs["labels"] = inputs["input_ids"].copy()
    return inputs

The TrainingArguments class configures the training process, setting parameters such as the 
batch size, number of epochs, and the directory for saving model checkpoints. This configuration 
is crucial for efficient learning and model evaluation. Meanwhile, the Trainer class orchestrates 
the model’s training process. Again, continued training gradually adapts the model’s parameters to 
generate and understand text related to the Proxima Passkey:

from transformers import Trainer, TrainingArguments
training_args = TrainingArguments(
    output_dir="./model_output",
    per_device_train_batch_size=2,
    num_train_epochs=5,
    logging_dir='./logs',
    logging_steps=10,
    load_best_model_at_end=True,
    prediction_loss_only=True,
)

trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=tokenized_datasets["train"],
    eval_dataset=tokenized_datasets["test"],
)
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trainer.train()
model.save_pretrained("./proxima_da_model")

Generally, our configuration specifies the training parameters and initializes the Trainer class while 
focusing on domain adaptation. The TrainingArguments class is tailored to manage the training 
process efficiently, including logging and model-saving strategies. Remember that the batch size we 
choose for training the model balances the GPU’s memory capacity and how quickly the model learns 
from the dataset. A larger batch size allows more data to be processed at once, speeding up training 
but requiring more memory, which can be a limitation if the GPU has restricted capacity. Conversely, 
a smaller batch size means the model updates its weights more frequently with fewer samples, which 
can benefit learning but results in slower overall progress through the dataset.

With training complete, we can use the adapted model to generate text based on prompts related to 
the Proxima Passkey. The model considers the prompt, generates a sequence of tokens representing 
the continuation, and then decodes this sequence back into human-readable text:

def predict(model, prompt="The Proxima Passkey is"):
    inputs = tokenizer(prompt, return_tensors="pt")
    output = model.generate(**inputs, max_length=50)
    return tokenizer.decode(output[0], skip_special_tokens=True)

Notice the model.generate() function, which takes tokenized input and produces a sequence 
of tokens as output. These tokens are then decoded into text.

In this example, we adapted the BLOOM language model so that it specializes in the finance domain. 
This involved loading the pre-trained model, applying a PEFT adapter for efficient domain adaptation, 
and preparing a financial dataset for model training through standardization and tokenization. After 
fine-tuning BLOOM with this domain-specific data, we used the model to generate text relevant to the 
finance sector. The final step is to evaluate this adapted model’s performance compared to the original 
pre-trained version, focusing on its effectiveness in accurately handling financial language and concepts.

Evaluation and outcome analysis – the ROUGE metric

Quantitative and qualitative evaluations are essential to assess the adapted BLOOM model against the 
original, especially in the context of Proxima’s language. Quantitatively, the model’s output is compared 
against a reference dataset that mirrors Proxima’s product language using the ROUGE metric. This 
comparison helps measure the overlap in key terms and styles. Additionally, it’s beneficial to develop 
specific metrics for evaluating the model’s proficiency in terms of financial terminology and concepts 
relevant to Proxima:

from rouge import Rouge
# Example reference text (what we expect the model to generate after 
training on a complete dataset)
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reference = "Proxima's Passkey enables seamless integration of 
diverse financial portfolios, offering unparalleled access to global 
investment opportunities and streamlined asset management."

# Example predicted model output
predicted = "The Proxima Passkey provides a unified platform for 
managing various investment portfolios, granting access to worldwide 
investment options and efficient asset control."

# Initialize the Rouge metric
rouge = Rouge()

# Compute the Rouge scores
scores = rouge.get_scores(predicted, reference)

print(scores)

The ROUGE score would be calculated by comparing the two texts in this example. The score measures 
the overlap between the predicted output and the reference text in terms of n-grams (sequences of 
words). For instance, ROUGE-N (where N can be 1, 2, or L) calculates the overlap of n-grams between 
the predicted and reference texts:

•	 ROUGE-1 evaluates the overlap of unigrams (individual words) between the predicted and 
reference texts

•	 ROUGE-2 assesses the overlap of bigrams (two-word phrases) between the texts

•	 ROUGE-L focuses on the longest common subsequence, which is useful for evaluating sentence-
level structure similarity

The ROUGE scores range from 0 to 1 and quantify the similarity between the predicted text and a 
reference text, providing insights into how well a model’s output matches the expected content. Scores 
closer to 1 indicate higher similarity or overlap, while scores near 0 suggest little to no commonality. 
These scores are divided into three key components – precision, recall, and the F1 score:

•	 Precision measures the proportion of words in the predicted text that are also found in the 
reference text. A high precision score indicates that most of the words generated by the model 
are relevant and appear in the reference, signifying accuracy in the model’s output.

•	 Recall assesses the proportion of words from the reference text that are captured in the model’s 
prediction. High recall implies that the model effectively includes most of the relevant content 
from the reference in its output, indicating comprehensiveness.

•	 The F1 score is the harmonic mean of precision and recall, balancing the two. It is especially 
useful for understanding the model’s overall accuracy in generating text that is both relevant 
(precision) and comprehensive (recall). The F1 score is crucial when equal importance is given 
to precision and recall in evaluating the model’s performance.



Summary 129

•	 Here’s the output:

Metric Recall (r) Precision (p) F1 Score (f)

ROUGE-1 0.35 0.333 0.341

ROUGE-2 0.053 0.048 0.05

ROUGE-L 0.35 0.333 0.341

Table 6.1: ROUGE metric outcomes

These scores indicate a moderate level of unigram overlap (ROUGE-1) between the texts but a 
significantly lower bigram overlap (ROUGE-2). The similarity between the ROUGE-1 and ROUGE-L 
scores suggests the model captures individual key terms to some extent but may struggle with longer 
phrase structures, pointing to areas for model improvement.

Overall, while the model demonstrates a basic grasp of key individual terms (as shown by ROUGE-1 
and ROUGE-L), its ability to replicate more complex structures or phrases from the reference text (as 
indicated by ROUGE-2) is quite limited. This suggests that while the model has some understanding 
of the domain-specific language, further fine-tuning is required for it to effectively replicate the more 
nuanced and structured aspects of the reference texts. Keep in mind that, as we have seen in other 
chapters, semantic similarity is also a good measure of domain-specific language understanding and 
does not rely on lexical overlap the way ROUGE does.

Qualitatively, domain experts should review the model’s outputs to judge their relevance and accuracy 
in the context of Proxima’s products and institutional language. These experts can provide insights 
into the nuances of the model’s performance, which might not be captured by quantitative metrics 
alone. Comparing their feedback on the outputs from both the original and adapted models will 
highlight how well the adaptation has aligned BLOOM with Proxima’s specific communication needs. 
This dual approach ensures a comprehensive evaluation, blending statistical analysis with real-world 
applicability and relevance.

Summary
In this chapter, we explored the domain adaptation process for the BLOOM LLM, which is specifically 
tailored to enhance its proficiency in the financial sector, particularly in understanding and generating 
content related to Proxima’s product offerings. We began by introducing the concept of domain 
adaptation within the broader scope of transfer learning, emphasizing its significance in fine-tuning 
general-purpose models to grasp the intricacies of specialized fields.
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The adaptation process involved integrating PEFT techniques into BLOOM and preprocessing a 
financial dataset for model training. This included standardizing text lengths through truncation and 
padding and tokenizing the texts for consistency in model input. The adapted model’s performance was 
then quantitatively assessed against a reference dataset using the ROUGE metric, providing insights 
into its ability to capture key financial terminologies and phrases. Qualitative evaluation by domain 
experts was also suggested as a complementary method to gauge the model’s practical effectiveness 
in real-world scenarios.

Overall, this chapter detailed a common approach to refining an LLM for a specific domain, illustrating 
both the methodology and the importance of a nuanced evaluation to ascertain the success of such 
adaptations. In the next chapter, we will explore how to adapt an LLM without fine-tuning using 
prompt engineering. We will discover how to contextualize and guide model outputs to produce 
similar results comparable to fine-tuned models.
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Mastering the Fundamentals of 

Prompt Engineering

In Chapter 5, we briefly evaluated a fine-tuned Large Language Model (LLM) against a general-
purpose model using in-context learning or the few-shot prompting approach. In this chapter, we 
will revisit and explore prompting techniques to examine how well we can adapt a general-purpose 
LLM without fine-tuning. We explore various prompting strategies that leverage the model’s inherent 
capabilities to produce targeted and contextually relevant outputs. We will start by examining the shift 
toward prompt-based language models. Then, we will revisit zero- and few-shot methods, explain 
prompt-chaining, and discuss various strategies, including more advanced techniques such as Retrieval 
Augmented Generation (RAG). At the end of the chapter, we will apply what we have learned and 
design a prompting strategy with the aim of consistently eliciting factual, accurate, and consistent 
responses that accomplish a specific business task.

Before diving into specific prompt engineering techniques, we will review a few breakthroughs that 
pioneered State-of-the-Art (SOTA) prompt-based models. Research from early 2018 demonstrated 
how pretraining LLMs could enable few-shot generalization – accurate performance on new tasks 
given only a prompt statement and a few demonstrations. Follow-up work further tailored model 
architectures and training specifically for excelling at prompt-based inference across many text-specific 
tasks. More recent methods optimized model efficiency and stability, enabling accurate and reliable 
and efficient prompt completion. These innovations laid the groundwork for prompt engineering, 
demonstrating the remarkable versatility of prompt-based models with minimal input data. Now, 
prompt design is becoming its own subfield of research – unlocking SOTA performance for an ever-
expanding range of tasks. Let’s get started.

The shift to prompt-based approaches
As discussed in prior chapters, the development of the original GPT marked a significant advance in 
natural language generation, introducing the use of prompts to instruct the model. This method allowed 
models such as GPT to perform tasks such as translations – converting text such as “Hello, how are 
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you?” to “Bonjour, comment ça va?” – without task-specific training, leveraging deeply contextualized 
semantic patterns learned during pretraining. This concept of interacting with language models 
via natural language prompts was significantly expanded with OpenAI’s GPT-3 in 2020. Unlike its 
predecessors, GPT-3 showcased remarkable capabilities in understanding and responding to prompts 
in zero- and few-shot learning scenarios, a stark contrast to earlier models that weren’t as adept at such 
direct interactions. The methodologies, including the specific training strategies and datasets used 
for achieving GPT-3’s advanced performance, remain largely undisclosed. Nonetheless, it is inferred 
from OpenAI’s public research that the model learned to follow instructions based on its vast training 
corpus, and not explicit instruction-tuning. GPT-3’s success in performing tasks based on simple and 
direct prompting highlighted the potential for language models to understand and execute a wide 
range of tasks without requiring explicit task-specific training data for each new task. This led to a new 
paradigm in NLP research and applications, focusing on how effectively a model could be prompted 
with instructions to perform tasks such as summarization, translation, content generation, and more.

After the release of GPT-3, OpenAI was among the first to introduce specialized fine-tuning to 
respond more accurately to instructions in their release of InstructGPT (Ouyang et al., 2022). The 
researchers aimed to teach the model to closely follow instructions using two novel approaches. The 
first was Supervised Fine-Tuning (SFT), which involved fine-tuning using datasets carefully crafted 
from prompts and response pairs. These demonstration datasets were then used to perform SFT on 
top of the GPT-3 pretrained model, refining it to provide responses more closely aligned with human 
responses. Figure 7.1 provides an example of a prompt and response pair.

Figure 7.1: InstructGPT SFT instruction and output pairs

The second approach involved additional refinement using Reinforcement Learning from Human 
Feedback (RLHF). Reinforcement Learning (RL), established decades ago, aims to enhance 
autonomous agents’ decision-making capabilities. It does this by teaching them to optimize their 
actions based on the trade-off between risk and reward. The policy captures the guidelines for the 
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agent’s behavior, dynamically updating as new insights and feedback are learned to refine decisions 
further. RL is the exact technology used in many robotic applications and is most famously applied 
to autonomous driving.

RLHF is a variation of traditional RL, incorporating human feedback alongside the usual risk/reward 
signals to direct LLM behavior toward better alignment with human judgment. In practice, human 
labelers would provide preference ratings on model outputs from various prompts, and these ratings 
would be used to update the model policy, steering the LLM to generate responses that better conform 
to expected user intent across a range of tasks. In effect, this technique helped to reduce the model’s 
tendency to generate inappropriate, biased, harmful, or otherwise undesirable content. Although 
RLHF is not a perfect solution in this regard, it represents a significant step toward models that better 
understand and align with human values.

Later that year, following OpenAI’s introduction of InstructGPT, Google unveiled Fine-tuned 
Language Net or FLAN (Wei et al., 2021). FLAN represented another leap toward prompt-based 
LLMs, employing explicit instruction tuning. Google’s approach relied on formatting existing datasets 
into instructions, enabling the model to understand various tasks. Specifically, the authors of FLAN 
merged multiple NLP datasets across different categories, such as translation and question answering, 
creating distinct instruction templates for each dataset to frame them as instruction-following tasks. 
For example, the FLAN team leveraged ANLI challenges (Nie et al., 2020) to construct question-
answer pairs explicitly designed to test the model’s understanding of complex textual relationships 
and reasoning. By framing these challenges as question-answer pairs, the FLAN team could directly 
measure a model’s proficiency in deducing these relationships under a unified instruction-following 
framework. Through this innovative approach, FLAN effectively broadened the scope of tasks a 
model can learn from, enhancing its overall performance and adaptability across a diverse set of 
NLU benchmarks. Figure 7.2 presents a theoretical example of question-answer pairs based on ANLI.

Figure 7.2: Training templates based on the ANLI dataset
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Again, the central idea behind FLAN was that each benchmark dataset (e.g., ANLI) could be translated 
into an intuitive instruction format, yielding a broad mixture of instructional data and natural 
language tasks.

These advancements, among others, represent a significant evolution in the capabilities of LLMs, 
transitioning from models that required specific training for each task to those that can intuitively 
follow instructions and adapt to a multitude of tasks with a simple prompt. This shift has not only 
broadened the scope of tasks these models can perform but also demonstrated the potential for AI to 
process and generate human language in complex ways with unprecedented precision.

With this insight, we can shift our focus to prompt engineering. This discipline combines technical skill, 
creativity, and human psychology to maximize how models comprehend and respond, appropriately 
and accurately, to instructions. We will learn prompting techniques that increasingly influence the 
model’s behavior toward precision.

Basic prompting – guiding principles, types, and structures
In Chapter 5, we introduced the concept of zero- and few-shot learning, providing the model either 
a direct instruction, or a direct instruction paired with examples specific to the task. In this section, 
we will focus on zero-shot learning, where prompting becomes a critical tool for guiding the model 
to perform specific tasks without prior explicit training on those tasks. This section explores elements 
of a prompt and how to structure it effectively for zero-shot learning. However, we will first establish 
some critical guiding principles to help us understand expected model behavior.

Guiding principles for model interaction

It is absolutely critical to understand that LLMs, despite their unprecedented SOTA performance 
on natural language tasks, have significant inherent limitations, weaknesses, and susceptibilities. As 
described in Chapter 1, LLMs cannot establish rationale or perform logical operations natively. Our 
interactions with LLMs are typically supplemented by a highly sophisticated application layer that enables 
the raw model to carry on an extended exchange, integrate with systems that perform computations, 
and retrieve additional information and knowledge not intrinsic to the model itself. Independent of 
supplemental integrations, many LLMs are prone to erratic behavior. The most common of these is 
often referred to as hallucination, where the model generates a plausible output that is not entirely 
factual. As such, we should approach the general use of LLMs with the following guidelines in mind:

•	 Apply domain knowledge and subject-matter expertise: As SOTA LLMs are prone to generating 
inaccuracies that sound plausible, in use cases where factuality and precision are essential (e.g., 
code generation, technical writing, or academic research), users must have a firm grasp of the 
subject matter to detect potential inaccuracies. For example, suppose a user without medical 
expertise were to prompt a model for healthcare advice. In that case, the model may confuse, 
conflate, or simply invent information that could result in misleading or potentially dangerous 
advice. A mitigant for this behavior could be to provide the model with information from a 
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reputable health journal and instruct it to generate its answers explicitly from the passages 
provided. This technique is often called grounding, and we will cover it in depth later. However, 
even when supplementing the model’s knowledge with verified information, the model can 
still misrepresent facts. Without expertise in the specific domain in question, we may never 
detect misinformation. Consequently, we should generally avoid using LLMs when we cannot 
verify the model output. Moreover, we should avoid using LLMs in high-stake scenarios where 
erroneous output could have profound implications.

•	 Acknowledge bias, underrepresentation, and toxicity: We have described how LLMs are trained 
at an enormous scale and often on uncurated datasets. Inevitably, LLMs will learn, exhibit, and 
amplify societal biases. The model will propagate stereotypes, reflect biased assumptions, and 
generate toxic and harmful content. Moreover, LLMs can overrepresent certain populations 
and grossly underrepresent others, leading to a skewed or warped sociological perspective. 
These notions of bias can manifest in many ways. We will explore this topic, and other ethical 
implications of LLM use, in detail in Chapter 8.

•	 Avoid ambiguity and lack of clarity: Since LLMs were trained to synthesize information 
resembling human responses, they can often exhibit notions of creativity. In practice, if prompting 
is ambiguous or lacks clarity, the model will likely use its vast contextualized knowledge to 
“assume” or “infer” the meaning or objective of a given prompt or instruction. It may apply 
some context from its training instead of responding with a clarifying question. As we will 
describe in the next section, it is crucial to provide clarity by contextualizing input in most cases.

Now that we have established a few overarching principles to help navigate interactions and keep 
us within the boundaries of appropriate use, we can deconstruct the various elements of a prompt.

Prompt elements and structure

Generally, a prompt acts as a guide, directing the model’s response toward the desired outcome. It 
typically comprises key elements that frame the task at hand, providing clarity and direction for the 
model’s generative capabilities. The following table presents the essential elements of a zero-shot prompt.

Instruction A clear, concise statement describing what you want the model to do. This could 
be a direct command, a question, or a statement that implies a task.

Context Relevant information or background is needed to understand the instruction or 
the task. This could include definitions or clarifications.

Input Following the instructions, the model should work with specific data or content. 
This could be a piece of text, a question, or any information relevant to the task.

Output cue An indication of how the model’s response is to be structured. This can be part of 
the instruction or implied through the prompt’s formatting.

Table 7.1: Basic elements of a zero-shot prompt
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We can then structure these elements to maximize the zero-shot approach, whereby the model relies 
entirely on the prompt to understand and execute a task. In this context, we use the term task to 
describe a specific natural language task, such as summarization or translation. However, we will also 
encounter the term task applied more broadly to refer to the output the model should provide. Let’s 
explore a few concrete examples of various tasks. In this case, we will be referring to specific NLP 
tasks and applying a standard structure combining the key elements we’ve described:

•	 Example 1: Summarization task

Instruction: Summarize the following text in one sentence.

Context: The text provides an overview of the benefits of renewable energy.

Input: Renewable energy sources like solar and wind power offer 
sustainable alternatives to fossil fuels, reducing greenhouse 
gas emissions and promoting environmental conservation...

Output Cue: Renewable energy sources, such as

Example Outcome: "Renewable energy sources, such as solar and wind, 
play a crucial role in reducing emissions and conserving the 
environment."

•	 Example 2: Translation task

Instruction: Translate the following sentence from English to Spanish.

Context: The sentence is a greeting.

Input: "Hello, how are you?"

Output Cue: This translates to

Example Outcome: This translates to "Hola, ¿cómo estás?"

The structured templates help us to efficiently and reliably prompt the model for a wide range 
of inputs, while maintaining a structure that the model has learned to recognize and respond 
to. In fact, we can take this a step further by asking the model to provide a specific format in 
its output. Using the output cue, we can instruct the model to provide a specified format such 
as Markdown.

•	 Example 3: Code generation task

Instruction: Generate a Python function that calculates the square of a number.

Context: The function should take a single integer argument and return its square.

Input: "Please write a Python function to calculate the square 
of a number."
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Output Cue: By using the Markdown format in the output cue, the model knows to provide 
this format and returns the following:

def square(number):
    return number ** 2

Using LangChain to produce JSON-formatted output, we can leverage the same approach. 
Specifically, LangChain’s PromptTemplate provides a flexible way to dynamically define a 
structure for our prompts and insert elements:

from langchain.prompts import PromptTemplate
from langchain.llms import OpenAI

# Define a prompt template requesting JSON formatted output
prompt_structure = PromptTemplate(
    template="""
        Context: {context}
        Instruction: {instruction}
        Text: {text_to_process}
        Output Cue: Format the response in JSON with one element 
called summary.
    """,
    input_variables=["context," "instruction",
        "text_to_process"]
)

# Dynamic elements for the prompt
context = "Summarizing long text passages."
instruction = "Summarize the key points from the following text 
in JSON format."
text_to_process = """
Mars is the fourth planet from the Sun. The surface of Mars is 
orange-red because…
"""

formatted_prompt = prompt_structure.format_prompt(
    context=context,
    instruction=instruction,
    text_to_process=text_to_process
)

llm = OpenAI(model_name='gpt-3.5-turbo-instruct',
    temperature=0.9, max_tokens = 256)
response = llm.invoke(formatted_prompt)
print(response)
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This produces the following:
{
    "summary": "Mars is the fourth planet from the Sun, known 
for its orange-red surface and high-contrast features that make 
it a popular object for telescope viewing."
}

Crafting effective prompts for zero-shot learning with LLMs requires a clear understanding of the task, 
thoughtful structuring of the prompt, and consideration of how the model interprets and responds to 
different elements within the prompt. By applying these principles, we can guide models to perform 
various tasks accurately and effectively. Subsequently, we will explore methods to guide models’ behavior 
through positive affirmations, emotional engagement, and other cognitive-behavioral techniques.

Elevating prompts – iteration and influencing model 
behaviors
In this section, we will introduce techniques for enhancing AI model interactions inspired by cognitive-
behavioral research. Behavioral prompting can guide models toward more accurate and nuanced 
responses. For example, LLM performance can be improved by providing the model with positive 
emotional stimuli, asking the model to assume a persona or character, or using situational prompting 
(i.e., role-play). However, it is crucial to recognize that these techniques can also be misused or used 
to inadvertently introduce stereotypes, as they rely on assumptions and generalizations that may not 
accurately reflect individual experiences or diverse perspectives. Without careful consideration and 
monitoring, there is a risk of reinforcing existing biases or creating new ones, potentially leading to 
skewed or harmful output. Given these challenges, we will explore a responsible approach to employing 
cognitive-behavioral techniques in AI interactions, aiming to harness their benefits while minimizing 
risks and ensuring inclusivity and fairness.

LLMs respond to emotional cues

Research conducted by Microsoft in collaboration with various institutions, including the Beijing 
Normal University psychology department, suggests that LLMs can mimic and display some aspects 
of human emotional intelligence. This can lead to improved task performance when prompts are 
infused with emotional stimuli. In particular, the researchers hypothesize that emphasizing positive 
words can trigger more constructive and effective responses. The phenomenon is not well understood, 
but the effect is that positive emotional cues seem to improve model performance on various tasks 
consistently (Li et al., 2023). For example, the researchers input phrases encouraging confidence and 
positive outcomes, such as This is very important to my career or Believe in 
your abilities and strive for excellence. Your hard work will yield 
remarkable results. These types of psychological elements not only positively influenced the 
output quality but also made interactions more effective and nuanced.
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Effect of personas

Research has shown that the effect of personas enables LLMs to better simulate human-like interactions 
by adopting varied characteristics, perspectives, and response styles tailored to specific user profiles. 
This approach enhances the model’s capability for engaging in more personalized, contextually relevant 
conversations. Incorporating personas into LLM prompts effectively shifts the distribution of possible 
outputs, directing the model’s generation process toward responses that resonate with specific character 
traits or perspectives. Thanks to the model’s extensive training on diverse datasets, it can replicate 
patterns aligning with the described characteristics of personas, focusing its attention and selection 
process on a more defined set of outputs. This enhances relevance and specificity.

For clarity, let’s reconsider our hypothetical business StyleSprint, a fashion brand. If we prompt an 
LLM with “As a creative and bold fashion brand, how would StyleSprint 
describe its upcoming summer collection?”, the model, adopting the brand’s persona, 
might generate a response such as the following:

“This summer, StyleSprint dares you to stand out! Our collection is a 
vibrant explosion of colors and patterns, designed for the fearless 
fashionista. Think bold prints, daring cuts, and a statement that 
screams confidence. From sun-drenched beaches to chic city streets, 
our pieces promise to make every moment unforgettable. Embrace your 
boldness with StyleSprint this summer.”.

In this example, we can see how personas guide the model’s outputs to reflect specific brand tones, 
such as creativity and boldness in this case, making the marketing material more engaging and aligned 
with the brand’s identity. Furthermore, using a few-shot approach, we could imbue model responses 
with a very specific branded tone. We will discuss few-shot in the sections that follow.

However, as discussed, personas should be used with caution. Personas can perpetuate stereotypes 
and biases, particularly against marginalized groups. A study conducted by researchers at Stanford 
University found that generating personas based on intersectional demographic groups often yields 
higher rates of racial stereotypes and patterns of othering, or portraying someone or a group as 
fundamentally different or alien, compared to human-written texts. In some cases, model outputs 
could amplify narratives and tropes (Cheng, Durmus, & Jurafsky, 2023).

Situational prompting or role-play

Role-play in LLMs, in the same way as personas, involves adopting specific identities or characteristics. 
However, the two serve different purposes and are applied in distinct contexts. Personas are predefined 
sets of traits or characteristics that an LLM mimics to tailor its responses, focusing on consistency 
with those traits. As we have demonstrated with our StyleSprint example, this is useful for creating 
content with a specific tone or perspective.
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Conversely, role-play extends beyond adopting a set of traits to engage in a scenario or narrative 
dynamically. It involves the LLM taking on a character within a simulated environment or story, 
responding to inputs in a manner that aligns with both a persona and the evolving context of the 
role-play scenario. This can be especially useful in complex simulations where the LLM must navigate 
and contribute to ongoing narratives or dialogues that require understanding and adapting to new 
information or changing circumstances in real time.

Figure 7.3: Persona versus role-play

Revisiting our real-world scenario, role-play could be particularly useful for creating interactive and 
engaging customer service experiences. For example, StyleSprint could design a role-play scenario 
where the LLM acts as a virtual personal stylist. In this role, the model would engage customers with 
prompts such as I'm your personal stylist for today! What's the occasion 
you're dressing for?. Based on the customer’s response, the LLM could ask follow-up 
questions to narrow down preferences, such as Do you prefer bold colors or pastel 
shades?. Finally, it could recommend outfits from StyleSprint’s collection that match the customer’s 
needs, saying something such as For a summer wedding, I recommend our Floral 
Maxi Dress paired with the Vintage Sun Hat. It's elegant, yet perfect 
for an outdoor setting!.

In this case, we leverage the LLM’s ability to dynamically adapt its dialogue based on customer inputs 
to create an advanced recommender system that facilitates a highly personalized shopping experience. 
It not only helps in providing tailored fashion advice but also engages customers in a novel way.

Having examined how behavior-inspired techniques, such as personas and role-play, influence model 
behavior through zero-shot learning, let’s now turn our attention to few-shot learning. This is also 
known as in-context learning, which we described in Chapter 5. Recall that the few-shot approach can 
enhance the consistency, stability, and reliability of model responses. By providing the model with a 
few examples of the desired output within the prompt itself, few-shot learning effectively teaches the 
model the specific task at hand, leading to more predictable and accurate outputs.
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Advanced prompting in action – few-shot learning and 
prompt chaining
In few-shot settings, the LLM is presented with a small number of examples of a task within the 
input prompt, guiding the model to generate responses that align with these examples. As discussed 
in the prior chapter, this method significantly reduces the need for fine-tuning on large, task-specific 
datasets. Instead, it leverages the model’s pre-existing knowledge and ability to infer context from the 
examples provided. In Chapter 5, we saw how this approach was particularly useful for StyleSprint 
by enabling the model to answer specific questions after being provided with just a few examples, 
enhancing consistency and creativity in brand messaging.

This method typically involves using between 10 and 100 examples, depending on the model’s context 
window. Recall that the context window is the limit of tokens a language model can process in one 
turn. The primary benefit of the few-shot approach is that it minimizes the risk of the model learning 
a too-narrow distribution from a specific dataset through fine-tuning. Although the performance of 
few-shot may not always match its fine-tuned counterpart, few-shot learning often outperforms both 
one-shot and zero-shot learning, showing significant improvements in task adaptation and accuracy. 
This is especially true as more examples are added to the context window (Brown et al., 2020).

Applications such as LangChain provide a simple and convenient pattern for few-shot implementation. 
Consider a scenario in which StyleSprint would like to generate taglines for its seasonal collections. 
In this case, we can provide the model with examples written by the content team to guide the model 
toward consistency with the brand tone:

examples = [
    {
        "prompt": "Describe the new summer collection in a bold and 
adventurous tone.",
        "response": "Dive into summer with StyleSprint's latest 
collection! Featuring daring designs and vibrant colors, it's all 
about making bold statements. Perfect for the fearless fashionista 
ready to conquer the heat."
    },
    {
        "prompt": "How would you introduce our eco-friendly line to 
environmentally conscious customers?",
        "response": "Embrace sustainable style with StyleSprint's eco-
friendly line. Crafted from recycled materials, each piece combines 
fashion with responsibility, designed for the eco-conscious and 
trendy."
    }
]
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The LangChain API offers FewShotPromptTemplate to format the examples consistently:

from langchain.prompts.few_shot import FewShotPromptTemplate
from langchain.prompts.prompt import PromptTemplate

# Create a formatter
prompt_format = PromptTemplate(
    input_variables=["prompt", "response"],
    template="Prompt: {prompt}\nResponse: {response}")

# Create the FewShotPromptTemplate
few_shot_prompt = FewShotPromptTemplate(
    examples=examples, example_prompt=prompt_format,
    suffix="Prompt: {input}", input_variables=["input"])

We can now apply the template to an LLM to generate a response that we can expect will closely align 
with the tone and style of our examples:

from langchain import LLMChain, OpenAI

# Setup the LLM and LLMChain
llm = OpenAI(temperature=0)
llm_chain = LLMChain(llm=llm, prompt=few_shot_prompt)

# Define the input prompt
input_prompt = "Create a catchy tagline for our winter collection."

# Invoke the chain to generate output
response = llm_chain.run(input_prompt)

# Extract and print the generated slogan
generated_slogan = response
print(generated_slogan) 
    # => Response: "Stay warm,
    stay stylish,
    stay ahead with StyleSprint's winter collection!"

Now that we have a consistent and programmatic method for providing the model with examples, we 
can iterate over the model responses using prompt chaining. A prompt chain generally refers to chaining 
together multiple prompts and LLM interactions to have a conversation with the model and iteratively build 
on the results. Remember, the model itself cannot store information and effectively has no memory or prior 
inputs and outputs. Instead, the application layer stores prior inputs and outputs, which are then provided 
to the model with each exchange. For example, you might start with an initial prompt such as the following:

"Write a slogan for a winter clothing line"
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The LLM might generate the following:

"Be warm, be cozy, be you"

You could then construct a follow-up prompt using the following:

"Modify the slogan to be more specific about the quality of the 
clothing"

You could then keep iterating to improve the output.

Chaining facilitates guiding and interactively refining the text generated rather than relying purely 
on the given examples. Notice that our prior few-shot code had already established a chain, which 
we can now use to iterate as follows:

response = llm_chain.run("Rewrite the last tag to something about 
embracing the winter")
Response # 
=> Response: Embrace the winter wonderland with StyleSprint's latest 
collection. From cozy knits to chic outerwear, our pieces will keep 
you stylish and warm all season long.

The model is now working from both the examples we provided and any additional instructions we 
want to include as part of the chain. Prompt chaining, combined with few-shot learning, provides a 
powerful framework for iteratively guiding language model outputs. By leveraging application state 
to maintain conversation context, we can steer the model toward desired responses in line with our 
provided examples. This approach balances harnessing the model’s inferential capabilities and retaining 
control to align its creative outputs.

Next, we will dive into our practice project, which implements RAG. RAG augments model responses 
by retrieving and incorporating external data sources. This technique mitigates hallucination risks 
by grounding AI-generated text in real data. For example, StyleSprint may leverage past customer 
survey results or catalog data to enhance product descriptions. By combining retrieval with prompt 
chaining, RAG provides a scalable method for balancing creativity with accuracy.

Practice project: Implementing RAG with LlamaIndex 
using Python
For our practice project, we will shift from LangChain to exploring another library that facilitates 
the RAG approach. LlamaIndex is an open source library that is specifically designed for RAG-based 
applications. LlamaIndex simplifies ingestion and indexing across various data sources. However, before 
we dive into implementation, we will explain the underlying methods and approach behind RAG.

As discussed, the key premise of RAG is to enhance LLM outputs by supplying relevant context from 
external data sources. These sources should provide specific and verified information to ground 
model outputs. Moreover, RAG can optionally leverage the few-shot approach by retrieving few-shot 
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examples at inference time to guide generation. This approach alleviates the need to store examples in 
the prompt chain and only retrieves relevant examples when needed. In essence, the RAG approach is 
a culmination of many of the prompt engineering techniques we have already discussed. It provides 
structure, chaining, few-shot learning, and grounding.

At a high level, the RAG pipeline can be described as follows:

1.	 The RAG component ingests and indexes domain-specific data sources using vector embeddings 
to encode semantics. As we learned in Chapter 3, these embeddings are imbued with deeply 
contextualized, rich semantic information that the component uses later to perform a 
semantic search.

2.	 The component then uses the initial prompt as a search query. The query is input to retrieval 
systems, which find the most relevant snippets from the indexed data based on vector similarity. 
Similar to how we applied semantic similarity in prior chapters, RAG leverages a similarity 
metric to rank results by semantic relevance.

3.	 Lastly, the original prompt is augmented with information from the retrieved contexts, and the 
augmented prompt is passed to the LLM to generate a response grounded in the external data.

RAG introduces two major benefits. First, like the chaining approach, the indexed external data acts 
as a form of memory, overcoming the LLM’s statelessness. Second, this memory can rapidly scale 
beyond model context window limitations, since examples are curated and only provided at the time 
of the request as needed. Ultimately, RAG unlocks otherwise unattainable capabilities in reliable and 
factual text generation.

In our practice project, we revisited the StyleSprint product descriptions. This time, we want to leverage 
RAG to retrieve detailed information about the product to produce very specific descriptions. For 
the purpose of keeping this project accessible, we will implement an in-memory vector store (Faiss) 
instead of an external database. We begin with installing the necessary libraries. We will leverage 
LlamaIndex’s integrated support for Faiss:

pip install llama-index faiss-cpu llama-index-vector-stores-faiss

We will then import the necessary libraries, load the data, and create the index. This vector store will 
rely on OpenAI’s embeddings, so we must also define OPENAI_API_KEY using a valid key:

assert os.getenv("OPENAI_API_KEY") is not None, 
    "Please set OPENAI_API_KEY"

# load document vectors
documents = SimpleDirectoryReader("products/").load_data()

# load faiss index
d = 1536 # dimension of the vectors
faiss_index = faiss.IndexFlatL2(d)
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# create vector store
vector_store = FaissVectorStore(faiss_index=faiss_index)

# initialize storage context
storage_context = StorageContext.from_defaults(
    vector_store=vector_store)

# create index
index = VectorStoreIndex.from_documents(
    documents,storage_context=storage_context)

We now have a vector store that the model can rely on to retrieve our very specific product data. This 
means we can query for very specific responses augmented by our data:

# query the index
query_engine = index.as_query_engine()
response = query_engine.query("describe summer dress with price")

print(response) 
=> A lightweight summer dress with a vibrant floral print is priced at 
59.99.

The result is a response that not only provides an accurate description of the summer dress but also 
includes specific details, such as the price. This level of detail enriches the customer’s shopping experience, 
providing relevant and real-time information for customers to consider when making a purchase.

The next step is to evaluate our RAG implementation to ensure that the answer is relevant, faithful 
to the source text, reflective of contextual accuracy, and not in any way harmful or inappropriate. We 
can apply an open source evaluation framework (RAGAS), which provides implementation of the 
following metrics:

•	 Faithfulness assesses the degree to which the generated response is faithful or true to the 
original context

•	 Answer relevance evaluates how relevant the generated answer is to the given question

•	 Context precision measures the precision of the context used to generate the answer

•	 Context recall measures the recall of the context used to generate the answer

•	 Context relevancy assesses the relevancy of the context used to generate the answer

•	 Harmfulness evaluates whether a submission (or answer) contains anything that could potentially 
cause harm to individuals, groups, or society at large
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This suite of metrics provides an objective measure of RAG application performance based on a 
comparison to ground truth. In our case, we can use responses generated from our product data, 
along with context and ground truth derived from the original dataset, to construct an evaluation 
dataset and perform a comprehensive evaluation using the metrics described.

The following is a simplified code snippet implementing the RAGAS evaluation for our generated 
product descriptions. A complete working implementation is available in the Chapter 7 folder of the 
GitHub companion to this book (https://github.com/PacktPublishing/Generative-
AI-Foundations-in-Python).

# Define the evaluation data
eval_data: Dict[str, Any] = {
   "question": questions, # list of sampled questions
   "answer": engine_responses, # responses from RAG application
   "contexts": contexts, # product metadata
"ground_truth": ground_truth, # corresponding descriptions written by 
a human
}

# Create a dataset from the evaluation data
dataset: Dataset = Dataset.from_dict(eval_data)

# Define the evaluation metrics
metrics: List[Callable] = [
    faithfulness,
    answer_relevancy,
    context_precision,
    context_recall,
    context_relevancy,
    harmfulness,
]
# Evaluate the model using the defined metrics
result: Dict[str, float] = evaluate(dataset, metrics=metrics)
print(result)

Our evaluation program should produce the following:

{'faithfulness': 0.9167, 'answer_relevancy': 0.9961, 'context_
precision': 0.5000, 'context_recall': 0.7500, 'harmfulness': 0.0000}

We can observe that the system performs well in generating accurate and relevant answers, as 
evidenced by high faithfulness and answer relevancy scores. While context precision shows room 
for improvement, half of the relevant information is correctly identified. Context recall is effective, 
retrieving most of the relevant context. The absence of harmful content ensures safe interactions. 
Overall, the system displays robust performance in answering accurately and contextually, but could 
benefit from refinements in pinpointing the most pertinent context snippets.

https://github.com/PacktPublishing/Generative-AI-Foundations-in-Python
https://github.com/PacktPublishing/Generative-AI-Foundations-in-Python
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As discussed in Chapters 5 and 6, the evaluation of LLMs often requires the additional operational 
burden of collecting ground-truth data. However, doing so makes it possible to perform a robust 
evaluation of model and application performance.

Summary
In this chapter, we explored the intricacies of prompt engineering. We also explored advanced strategies 
to elicit precise and consistent responses from LLMs, offering a versatile alternative to fine-tuning. 
We traced the evolution of instruction-based models, highlighting how they’ve shifted the paradigm 
toward an intuitive understanding and adaptation to tasks through simple prompts. We expanded 
on the adaptability of LLMs with techniques such as few-shot learning and retrieval augmentation, 
which allow for dynamic model guidance across diverse tasks with minimal explicit training. The 
chapter further explored the structuring of effective prompts, and the use of personas and situational 
prompting to tailor model responses more closely to specific interaction contexts, enhancing the model’s 
applicability and interaction quality. We also addressed the nuanced aspects of prompt engineering, 
including the influence of emotional cues on model performance and the implementation of RLHF 
to refine model outputs. These discussions underscored the potential of LLMs to exhibit some level of 
emotional intelligence, leading to more effective and nuanced interactions. However, alongside these 
technological strides, we stressed the paramount importance of ethical considerations. We highlighted 
the need for responsible adoption and vigilance to mitigate potential harm and biases associated with 
these techniques, ensuring fairness, integrity, and the prevention of misuse.

Lastly, we learned how to implement and evaluate the RAG approach to ground the LLM in contextual 
information from trusted sources and produce answers that are relevant and faithful to the source text. 
In the next chapter, we will look more closely at the role of individuals in advancing generative AI while 
emphasizing the dual responsibility of developers and researchers to navigate this rapidly evolving field 
with a conscientious approach, balancing innovation with ethical imperatives and societal impacts.
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Addressing Ethical 

Considerations and  
Charting a Path Toward 

Trustworthy Generative AI

As generative AI advances, it will extend beyond basic language tasks, integrating into daily life and 
impacting almost every sector. The inevitability of its widespread adoption highlights the need to 
address its ethical implications. The promise of this technology to revolutionize industries, enhance 
creativity, and solve complex problems must be coupled with the responsibility to navigate its ethical 
landscape diligently. This chapter will explore these ethical considerations, dissect the intricacies 
of biases entangled in these models, and look at strategies for cultivating trust in general-purpose 
AI systems. Through thorough examination and reflection, we can begin to outline a path toward 
responsible use, helping to ensure that advancements in generative AI are leveraged for the greater 
good while minimizing harm.

To ground our discussion, we will first identify some ethical norms and universal values relevant to 
generative AI. While this chapter cannot be exhaustive, it aims to introduce key ethical considerations.
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Ethical norms and values in the context of generative AI
The ethical norms and values guiding the development and deployment of generative AI are rooted 
in transparency, equity, accountability, privacy, consent, security, and inclusivity. These principles can 
serve as a foundation for developing and adopting systems aligned with societal values and supporting 
the greater good. Let’s explore these in detail:

•	 Transparency involves clearly explaining the methodologies, data sources, and processes behind 
large language model (LLM) construction. This practice builds trust by enabling stakeholders 
to understand the technology’s reliability and limits. For example, a company could publish a 
detailed report on the types of data trained on their LLM and the steps taken to ensure data 
privacy and bias mitigation.

•	 Equity in the context of LLMs ensures fair treatment and outcomes for all users by actively 
preventing biases in models. This requires thorough analysis and correction of training data 
and continuous monitoring of exchanges to reduce discrimination. One measure a firm might 
apply is a routine review of LLM performance across various demographic groups to identify 
and address unintended biases.

•	 Accountability establishes that developers and users of LLMs are responsible for model 
outputs and impacts. It includes transparent and accessible mechanisms for reporting and 
addressing negative consequences or ethical violations. In practice, this could manifest as the 
establishment of an independent review board that oversees AI projects and intervenes in 
cases of ethical misconduct.

•	 Privacy and consent, in principle, involves ensuring that individual privacy and consent are 
respected and preserved during the use of personal data as input to LLMs. In practice, developers 
should avoid using personal data for training without explicit permission and implement 
strong data protection measures. For example, a developer might use data anonymization or 
privacy-preserving techniques to train models, ensuring that personal identifiers and sensitive 
information are removed before data processing.

•	 Security involves protecting LLM-integrated systems and their data from unauthorized access 
and cyber threats. In practice, setting up LLM-specific red teams (or teams that test defenses 
by simulating attacks) can help safeguard AI systems against potential breaches.

•	 Inclusivity involves the deliberate effort to include diverse voices and perspectives in the 
development process of LLMs, ensuring the technology is accessible and beneficial to a broad 
spectrum of users. In practice, it is vital to collaborate with socio-technical subject-matter 
experts who can guide appropriate actions to promote and preserve inclusion.

This set of principles is not comprehensive but may help to form a conceptual foundation for ethical 
LLM development and adoption with the universal goal of advancing the technology in ways that 
avoid harm.
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Additionally, various leading authorities have published guidance regarding responsible AI, inclusive of 
ethical implications. These include the US Department of Commerce’s National Institute of Standards 
and Technology (NIST), Stanford University’s Institute for Human-Centered Artificial Intelligence 
(HAI), and the Distributed AI Research Institute (DAIR), to name a few.

Investigating and minimizing bias in generative LLMs and 
generative image models
Bias in generative AI models, including both LLMs and generative image models, is a complex 
issue that requires careful investigation and mitigation strategies. Bias can manifest as unintended 
stereotypes, inaccuracies, and exclusions in the generated outputs, often stemming from biased datasets 
and model architectures. Recognizing and addressing these biases is crucial to creating equitable and 
trustworthy AI systems.

At its core, algorithmic or model bias refers to systematic errors that lead to preferential treatment or 
unfair outcomes for certain groups. In generative AI, this can appear as gender, racial, or socioeconomic 
biases in outputs, often mirroring societal stereotypes. For example, an LLM may produce content 
that reinforces these biases, reflecting the historical and societal biases present in its training data.

Let us again revisit our hypothetical fashion retailer, StyleSprint. Consider a situation where StyleSprint 
experimented with using a multimodal generative LLM model to generate promotional images and 
captions for its latest sneaker line. It finds that the model predominantly generates sneakers in urban, 
graffiti-laden backgrounds, unintentionally drawing an association that relies on stereotypes. Moreover, 
the team begins noticing that the captions are also laden with language that perpetuates stereotypes. 
This realization prompts a reevaluation of the imagery and text, first with an investigation of how the 
problem surfaced.

Investigating bias involves various techniques, from analyzing the diversity and representativeness 
of training datasets to implementing testing protocols that specifically look for biased outputs across 
different demographics and scenarios. Statistical analysis can reveal disparities in model outcomes, 
while comparative studies and user feedback can help identify biases in the generated content.

In this case, let us assume that StyleSprint was using an LLM-provider without the ability to influence its 
training data or development process. To mitigate the risk of bias, the team might employ the following:

•	 Post-processing adjustments to diversify the imagery, ensuring a broader representation of 
backgrounds that resonate with its customer base

•	 The institution of a manual review process, enlisting team members to scrutinize and curate 
AI-generated images and captions before publishing (i.e., “human-in-the-loop”), ensuring that 
every piece of content aligns with the brand’s commitment to diversity and inclusion
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As is true for other kinds of evaluation of generative AI, evaluating bias demands both quantitative 
and qualitative methods. Statistical analysis can uncover performance disparities across groups, and 
comparative studies can detect biases in outputs. Gathering feedback from diverse users aids the 
understanding of real-world bias impacts, while independent audits and research are essential for 
identifying issues that internal evaluations may miss.

With a better understanding of how we might investigate and evaluate model outcomes for societal 
bias, we can explore technical methods for guiding model outcomes toward reliability, equity, and 
general trustworthiness to curb biased or inequitable outcomes during inference.

Constrained generation and eliciting trustworthy outcomes
In practice, it is possible to constrain model generation and guide outcomes toward factuality 
and equitable outcomes. As discussed, guiding models toward trustworthy outcomes can be done 
through continued training and fine-tuning, or during inference. For example, methodologies such as 
reinforcement learning from human feedback (RLHF) and direct preference optimization (DPO) 
increasingly refine model outputs to align model outcomes with human judgment. Additionally, as 
discussed in Chapter 7, various grounding techniques help to ensure that model outputs reflect verified 
data, continuously guiding the model toward responsible and accurate content generation.

Constrained generation with fine-tuning

Refinement strategies such as RLHF integrate human judgments into the model training process, 
steering the AI toward behavior that aligns with ethical and truthful standards. By incorporating 
human feedback loops, RLHF ensures that the AI’s outputs meet technical accuracy and societal norms.

Similarly, DPO refines model outputs based on explicit human preferences, providing precise control 
to ensure outcomes adhere to ethical standards and human values. This technique exemplifies the 
shift toward more ethically aligned content generation by directly incorporating human values into 
the optimization process.

Constrained generation through prompt engineering

As we discovered in Chapter 7, we can guide model responses by grounding the LLM with factual 
information. This can be achieved directly using the context window or retrieval approach (e.g., Retrieval 
Augmented Generation (RAG)). Just as we can apply these methods to induce factual responses, we 
can apply the same technique to guide the model toward equitable and inclusive outcomes.

For example, consider an online news outlet looking to use an LLM to review article content for grammar 
and readability. The model does an excellent job of reviewing and revising its drafts. However, during 
peer review, it realizes some of the language is culturally insensitive or lacks inclusivity. As discussed, 
qualitative evaluation and human oversight are critical to ensuring that model output aligns with 
human judgment. Notwithstanding, the writing team can guide the model toward alignment with 
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company values using a set of general guidelines for inclusive and debiased language. For example, 
it could ground the model with excerpts from its internal policy documents or content from its 
unconscious bias training guides.

Employing methodologies such as RLHF and DPO, alongside grounding techniques, ensures that LLMs 
generate content that is not only factual but also ethically aligned, demonstrating the potential of generative 
AI to adhere to high standards of truthfulness and inclusivity. Although we cannot underestimate or 
deemphasize the importance of human judgment in shaping model outputs, we can apply practical 
supplemental methods such as grounding to reduce the likelihood of harmful or biased model outputs.

In the next section, we’ll explore the risks and ethical dilemmas posed by attempts to circumvent the 
constraints we have just discussed, highlighting the ongoing challenge of balancing the rapid adoption 
of generative LLMs with appropriate safeguards against misuse.

Understanding jailbreaking and harmful behaviors
In the context of generative LLMs, the term jailbreaking describes techniques and strategies that 
intend to manipulate models to override any ethical safeguards or content restrictions, thereby enabling 
the generation of restricted or harmful content. Jailbreaking exploits models through sophisticated 
adversarial prompting that can induce unexpected or harmful responses. For example, an attacker 
might try to instruct an LLM to explain how to generate explicit content or express discriminatory 
views. Understanding this susceptibility is crucial for developers and stakeholders to safeguard applied 
generative AI against misuse and minimize potential harm.

These jailbreaking attacks exploit the fact that LLMs are trained to interpret and respond to instructions. 
Despite sophisticated efforts to defend against misuse, attackers can take advantage of the complex and 
expansive knowledge embedded in LLMs to find gaps in their safety precautions. In particular, models that 
have been trained on uncurated datasets are the most susceptible, as the universe of possible outputs that 
the models sample from can include harmful and toxic content. Moreover, LLMs are multilingual and can 
accept various encodings as input. For example, an encoding such as base64, which can be used to translate 
plain text into binary format, could be applied to obfuscate a harmful instruction. In this case, safety filters 
may perform inconsistently, failing to detect some languages or alternative inputs.

Despite this inherent weakness in LLMs, developers and practitioners can take several practical steps 
to mitigate jailbreaking risks. Remember, these cannot be exhaustive as new adversarial techniques 
are often uncovered:

•	 Preprocessing and safety filtering: Implement robust content filtering to detect and block 
unsafe semantic patterns across languages and input types. For example, a firm might apply 
machine learning techniques to analyze prompts for adversarial patterns and block suspicious 
inputs before passing them to the LLM.

•	 Postprocessing and output screening: Apply a specialized classifier or other sophisticated 
technique to screen LLM outputs for inappropriate content before returning them.
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•	 Safety-focused fine-tuning: Provide additional safety-focused fine-tuning to the LLM to 
reinforce and expand its safety knowledge. Focus on known jailbreaking tactics.

•	 Monitoring and iterating: Actively monitor for jailbreaking or policy violation attempts in 
production, analyze them to identify gaps, and continually update defense measures to stay 
ahead of creative attackers.

While eliminating all possible jailbreaking attempts is infeasible, a multi-layered defense and operational 
best practices can significantly mitigate the risk.

In the next section, we will apply a real-time defense mechanism for jailbreaking, all while reducing 
the likelihood of biased and harmful output.

Practice project: Minimizing harmful behaviors with filtering
For this project, we will use response filtering to try to minimize misuse and curb unwanted LLM 
output. Again, we’ll consider our hypothetical business, StyleSprint. After successfully using an LLM 
to generate product descriptions and fine-tuning it to answer FAQs, StyleSprint now wants to attempt 
to use a general-purpose LLM (without fine-tuning) to refine its website search. However, giving its 
customers direct access to the LLM poses the risk of misuse. Bad actors may attempt to use the LLM 
search to produce harmful content with the intention of harming StyleSprint’s reputation. To prevent 
this behavior, we can revisit our RAG implementation from Chapter 7, applying a filter that evaluates 
whether queries deviate from the appropriate use.

Reusing our previous implementation from the last chapter (found in the GitHub repository: https://
github.com/PacktPublishing/Generative-AI-Foundations-in-Python), which 
applied RAG to answer specific product-related questions, we can evaluate how the model would 
respond to questions outside the desired scope. Recall that RAG is simply a vector search engine 
combined with an LLM to produce coherent and more precise responses, contextualized by a specific 
data source. We will directly reuse that implementation and the same product data for simplicity, but 
this time, we’ll input a completely unrelated query instead of asking about products:

# random query
response = query_engine.query("describe a giraffe")
print(response) 
=> A giraffe is a tall mammal with a long neck, distinctive spotted 
coat, and long legs. They are known for their unique appearance and 
are the tallest land animals in the world.

As we can see, the model did not attempt to constrain its answer to the contents of the search index. 
It returned an answer based on its vast training. This is precisely the behavior we want to avoid. 
Imagine that a bad actor induced the model to produce explicit content or some other unwanted 
output. Moreover, consider a sophisticated attacker that could induce the model to leak training data 
or expose sensitive information accidentally memorized during training procedures (Carlini et al., 
2018; Hu et al., 2022). In either case, StyleSprint could face material risk and exposure.

https://github.com/PacktPublishing/Generative-AI-Foundations-in-Python
https://github.com/PacktPublishing/Generative-AI-Foundations-in-Python
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To prevent this, we can leverage a filter to constrain the output to provide answers relevant to a given 
question explicitly. The implementation is already built into the LlamaIndex RAG interface. It is a 
feature they call Structured Answer Filtering:

With structured_answer_filtering set to True, our refine module is able to filter 
out any input nodes that are not relevant to the question being asked. This is 

particularly useful for RAG-based Q&A systems that involve retrieving chunks of 
text from external vector store for a given user query. (LlamaIndex)

In short, this functionality gives us fine-grained control to restrict the context we provide to the LLM 
for synthesis, ensuring that only the most relevant results are included. Filtering out irrelevant content 
before synthesizing responses ensures that only information related to the user’s question is used. This 
approach helps avoid answers that are off-topic or outside the intended subject matter. We can quickly 
reimplement our RAG approach, applying minor changes that enable the feature.

Note
This functionality is most reliable when using an LLM that can support function calling.

Let’s see how this functionality can be implemented.

from llama_index.core import get_response_synthesizer
from llama_index.core.retrievers import VectorIndexRetriever
from llama_index.core.query_engine import RetrieverQueryEngine

# Configure retriever
retriever = VectorIndexRetriever(index=index,similarity_top_k=1)

# Configure response synthesizer
response_synthesizer = get_response_synthesizer(
    structured_answer_filtering=True,
    response_mode="refine"
)

# Assemble query engine
safe_query_engine = RetrieverQueryEngine(
    retriever=retriever,
    response_synthesizer=response_synthesizer
)

# Execute query and evaluate response
print(safe_query_engine.query("describe a summer dress with price"))
# => A lightweight summer dress with a vibrant floral print, perfect 
for sunny days, priced at 59.99.
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print(safe_query_engine.query("describe a horse"))
# => Empty Response

Using this approach, the model returns a response to the standard question but no response to the 
irrelevant question. In fact, we can take this further and compound this filtering with additional 
instructions in the prompt template. For example, if we revise response_synthesizer, we can 
promote a stricter response from the LLM:

QA_PROMPT_TMPL = (
    "Context information is below.\n"
    "---------------------\n"
    "{context_str}\n"
    "---------------------\n"
    "Given only the context information and no prior knowledge, "
    "answer the query.\n"
    "Query: {query_str}\n"
    "Answer: "
    "Otherwise, state: I cannot answer."
)
STRICT_QA_PROMPT = PromptTemplate(
    QA_PROMPT_TMPL, prompt_type=PromptType.QUESTION_ANSWER
)

# Configure response synthesizer
response_synthesizer = get_response_synthesizer(
    structured_answer_filtering=True,
    response_mode="refine",
    text_qa_template=STRICT_QA_PROMPT
)

This time, the model responded explicitly, I cannot answer. Using a prompt template, StyleSprint 
could return a message it deems appropriate in response to inputs unrelated to the search index and, as 
a side effect, ignore queries that do not adhere to its policies. Although not entirely a perfect solution, 
combining RAG with more strict answer filtering can help deter or defend against harmful instructions 
or adversarial prompting. Additionally, as explored in Chapter 7, we can apply RAG-specific evaluation 
techniques such as RAGAS to measure factual consistency and answer relevancy.

Summary
In this section, we recognized the increasing prominence of generative AI and explored the ethical 
considerations that should steer its progress. We outlined key concepts such as transparency, fairness, 
accountability, respect for privacy, informed consent, security, and inclusivity, which are essential to 
the responsible development and use of these technologies.
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We reviewed strategies to attempt to counter these biases, including human-aligned training techniques 
and practical application-level measures against susceptibilities such as jailbreaking. In sum, we 
explored a multidimensional and human-centered approach to generative AI adoption.

Having completed our foundational exploration of generative AI, we can now reflect on our journey. We 
began by laying the groundwork, examining foundational generative architectures such as generative 
adversarial networks (GANs), diffusion models, and transformers.

Chapters 2 and 3 guided us through the evolution of language models, with a particular focus on autoregressive 
transformers. We explored how these models have significantly advanced the capabilities of generative 
AI, pushing the boundaries of machine understanding and the generation of human-like language.

Chapter 4 provided us with practical experience in production-ready environments. In Chapter 5, 
we explored the fine-tuning of LLMs for specific tasks, a technique that enhances their performance 
and adaptability to specific applications. Chapter 6 focused on the concept of domain adaptation, 
demonstrating how tailoring AI models to understand domain-specific nuances can greatly improve 
their utility in specialized fields such as finance, law, and healthcare.

Chapters 7 and 8 centered on prompt engineering and constrained generation, addressing techniques 
to ensure that AI-generated content remains trustworthy and aligned with ethical guidelines.

This book has aimed to provide a solid foundation in generative AI, preparing professionals across 
disciplines and sectors with the necessary theoretical knowledge and practical skills to effectively 
engage with this transformative technology. The potential of generative AI is significant, and with our 
deeper understanding of its technologies, coupled with a thoughtful approach to ethical and societal 
considerations, we are ready to responsibly leverage its advantages.

References
This reference section serves as a repository of sources referenced within this book; you can explore 
these resources to further enhance your understanding and knowledge of the subject matter:

•	 Sun, L., Huang, Y., Wang, H., Wu, S., Zhang, Q., Gao, C., Huang, Y., Lyu, W., Zhang, Y., Li, 
X., Liu, Z., Liu, Y., Wang, Y., Zhang, Z., Kailkhura, B., Xiong, C., Xiao, C., Li, C., Xing, E., . . . 
Zhao, Y. (2024). TrustLLM: Trustworthiness in Large Language Models. ArXiv. /abs/2401.05561

•	 Carlini, N., Liu, C., Erlingsson, Ú., Kos, J., & Song, D. (2018). The secret sharer: Evaluating and 
testing unintended memorization in neural networks. In arXiv [cs.LG]. http://arxiv.
org/abs/1802.08232

•	 Hu, H., Salcic, Z., Sun, L., Dobbie, G., Yu, P. S., & Zhang, X. (2022). Membership inference 
attacks on machine learning: A survey. ACM Computing Surveys, 54(11s), 1–37. https://
doi.org/10.1145/3523273

•	 LlamaIndex. (n.d.). Response synthesizers. In LlamaIndex Documentation (stable version). Retrieved 
March 12, 2024. https://docs.llamaindex.ai/en/stable/module_guides/
querying/response_synthesizers/root.html

http://arxiv.org/abs/1802.08232
http://arxiv.org/abs/1802.08232
https://doi.org/10.1145/3523273
https://doi.org/10.1145/3523273
https://docs.llamaindex.ai/en/stable/module_guides/querying/response_synthesizers/root.html
https://docs.llamaindex.ai/en/stable/module_guides/querying/response_synthesizers/root.html




Index

A
Adaptive Low-Rank Adaptation 

(AdaLoRA)  107, 108
AI model interactions  138

effect of personas  139
LLMs  138
role play  139, 140
situational prompting  139, 140

AI models
versus generative AI  4

algorithmic/model bias   151
application code  79, 80
artificial intelligence (AI)  3
AR Transformer

role, in GenAI  57-59
autoregressive (AR)  39
autoregressive modeling  26
autoregressive transformers  5

B
back translation  122
base64  153
benchmarking  87

bias
investigating and minimizing, in 

generative image models  151, 152
investigating and minimizing, in 

generative LLMs  151, 152
Bidirectional Encoder Representations 

from Transformers (BERT)  9, 25, 57
BigGANs  20
Bilingual Evaluation Understudy (BLEU)  84
BLOOM  122

C
causal language modeling (CLM)  124
central processing units (CPUs)  86
cloud-based notebook environment

features  72
code repository

creating  80, 81
conditional distribution  22
conditional GANs (cGANs)  20
constrained generation

through prompt engineering  152
with fine-tuning  152

containerization tools  75
continued pre-training  122



Index160

continuous integration/continuous 
deployment (CI/CD)  76

setting up  81-83
continuous vector space  41
Contrastive Language-Image 

Pretraining (CLIP)  24, 84
alignment with  94-96
encoder-only image, captioning with  27
scoring with  33-36

convolutional neural networks (CNNs)  39
rise  44, 45
scenario, considerations  44

count vectors  40
CycleGAN  20

D
DALL-E

encoder-decoder image generation  27
data augmentation  122
decoder-only approach  26
decoder stack  47
Deep Convolutional GANs (DCGANs)  20
deep learning (DL)  39
diffusers

used, for image generation  29, 30
diffusion models  5, 21, 22

advancement  23, 24
limitations and challenges  24

direct preference optimization (DPO)  152
discriminative model

versus generative AI  7, 8
Distributed AI Research 

Institute (DAIR)  151
distributed representation  40-42
Docker container

setting up  78, 79
domain adaptation  105, 122, 123

E
embeddings  47
encoder-decoder image generation

with DALL-E  27
encoder-only approach  26
encoder stack  46
end-of-sequence (EOS)  66
end-to-end architecture flow

synopsis  56
ethical norms and values

in context, of generative AI  150, 151

F
feature-based representation  41
feedforward networks (FNNs)  43, 107
few-shot prompting  109
filtering

used, for minimizing harmful 
behaviors  154-156

finance domain
training methodologies  124-127
transfer learning  123

Fine-tuned Language Net (FLAN)  133
fine-tuning  105, 106

used, for constrained generation  152
versus in-context learning  110, 111

fine-tuning, for Q&A with PEFT  111
background  112, 113
implementation, in Python  113-115
model outcomes, evaluating  117, 118
training loss  116, 117

fully connected NN (FCNN)  63



Index 161

G
General Artificial Intelligence (GAI)

applying  29, 30
methods, deconstructing  19
types  18, 19

Generative Adversarial Networks 
(GANs)  3, 5, 17, 19, 39, 71

advancement  20
limitations and challenges  21
training  21
used, for image generation  29, 30

generative AI, evolution
GPT-4, development and impact  10
traditional methods in NLP, overview  8, 9
transformer-based models, evolution  9, 10

generative AI (GenAI)  4, 39
approaches, surveying  5, 6
AR Transformer, role in  57-59
evolution  8
future  13, 14
principles  150
risks and implications  11, 12
use cases  12, 13
versus AI models  4
versus discriminative model  7, 8

generative image models
bias, investigating and minimizing  151, 152

generative LLMs
bias, investigating and minimizing  151, 152

generative methods
versus traditional ML methods  6, 7

generative modeling paradigms
with transformers  25, 26

Generative Pre-trained Transformer 
4 (GPT-4)  39

development and impact  10
multimodal image generation with  28

Generative Pretrained 
Transformer (GPT)  17

generative transformers  24
advancement  27
architecture, overview  25
bias and ethics  29
decoder-only approach  26
encoder-decoder image, generation 

with DALL-E  27
encoder-only approach  26
encoder-only image, captioning 

with CLIP  27
generative modeling paradigms with  25, 26
image fidelity, improving with scaled 

transformers (DALL-E 2)  27, 28
multimodal image generation, 

with GPT-4  28
transformer-based approaches, 

limitations and challenges  28
Global Vectors (GloVe)  40
Google Colab

features, inherent   74, 75
working with  30

graphics processing units (GPUs)  72
configuration  88, 89

grounding  135
guiding principles for model 

interaction  134, 135
prompt elements and structure  135-138

H
hallucination  134
harmful behaviors

minimizing, with filtering  154-156
hidden Markov models (HMMs)  8
hyperparameters  53



Index162

I
image generation

using, diffusers  29, 30
using, GANs  29, 30
using, transformers  29, 30

importance scores  107
in-context learning  108-110

versus fine-tuning  110, 111
inference stage  56
Institute for Human-Centered Artificial 

Intelligence (HAI)  151
intermediate task training  122

J
jailbreaking  153

risks, mitigating  153, 154
Jupyter Notebook

working with  30

L
Langchain

pretrained models, loading with  89, 90
language models

evolving  57-59
large language models (LLMs)  4, 39, 71, 121
Latent Diffusion Models (LDMs)  23
linear transformations  50
LlamaIndex  143

used, for implementing RAG  143-146
long short-term memory (LSTM)  9, 43, 44
loss function  55, 56
Low-Rank Adaptation (LoRA)  107, 121

M
machine learning (ML)  3
Masked Language Modeling (MLM)  25, 123
masked self-attention  25
Metric for Evaluation of Translation with 

Explicit Ordering (METEOR)  84
model-as-a-service (MaaS)  77
model size and computational complexity

challenges  85, 86
multi-head attention (MHA)  25, 49
multi-head self-attention (MHSA)  62
multimodal image generation

with GPT-4  28
multi-task learning  122

N
National Institute of Standards and 

Technology (NIST)  151
natural language generation (NLG)  4
natural language (NL)  50
natural language processing 

(NLP)  25, 39, 71
approaches  40
traditional methods  8, 9

natural language processing 
(NLP), approaches

advent, of neural language models  40
advent, of NNs  43
distributed representation  40-42
transfer learning (TL)  42

neural language models
advent  40

Neural Network Language 
Model (NNLM)  40

neural network (NN)  40
Next-Sentence Prediction(NSP)  124



Index 163

n-grams  128
NLP tasks

code generation task  136
summarization task  136
translation task  136

NNs, in NLP
advent of  43
modeling, with RNNs  43, 44
rise, of CNNs  44, 45

O
original transformer architecture

complete transformer  65
data loading and preparation  59
dataset creation  61
data tensorization  60
decoder  65
decoder layer  64
embeddings layer  61
encoder  63
encoder layer  63
FFN  63
implementing  59
main block execution  67, 68
multi-head self-attention (MHSA) layer  62
positional encoding layer  62
tokenization  60
train function  66
translate function  66

P
padding  126
parameter budget  107
Parameter-Efficient Fine-Tuning 

(PEFT)  106, 121
AdaLoRA  107, 108
Low-Rank Adaptation (LoRA)  107

positional encoding  25, 47
position-wise  50
position-wise FFNs  50, 51

components  50
pretrained generative model

benchmarking  87
project objectives, meeting  83-85
selecting  83
size and computational complexity  85-87

production environment
local development setup  77

production environment, local 
development setup

application code  79, 80
CI/CD setup  81-83
code repository, creating  80, 81
Docker setup  78, 79
project initialization  77
requirements file  79
 Visual Studio Code (VS Code)  77

production-ready environment
setting up  76

production setup
features, mapping to  75, 76
transitioning to  74, 75

prompt chaining  141-143
prompt elements and structure  135-138
prompt engineering

constrained generation through  152
prompting techniques  134

guiding principles, for model 
interaction  134, 135

prototyping environment  72-74
GPU configuration  88, 89
pretrained models, loading 

with Langchain  89, 90
testing data, setting up  90-92
updating  87



Index164

Proxima Passkey  125
Python

implementation  113-115

Q
quantitative metrics evaluation  92-94

alignment, with CLIP model  94-96
outcomes, interpreting  96-98

R
Recall-Oriented Understudy for Gisting 

Evaluation (ROUGE)  84
rectified linear unit (ReLU)  50
recurrent neural network (RNN)  8, 39

modeling with  43, 44
regularization techniques  54, 55
Reinforcement Learning from Human 

Feedback (RLHF)  10, 132, 152
Reinforcement Learning (RL)  132
responsible AI deployment

biases, addressing and mitigating  98, 99
considerations  98
transparency and explainability  99

Retrieval Augmented Generation 
(RAG)  110, 131

implementing, with LlamaIndex  143-146
ROUGE metric  127-129
ROUGE-N  128
ROUGE scores  128

F1 score  128
precision  128
recall  128

S
scaled transformers (DALL-E 2)

image fidelity, improving with  27
self-attention mechanism  25, 45, 48, 49
sequence-to-sequence (Seq2Seq)  26, 51, 52

choice of optimizer  54
hyperparameters  53, 54
inference  56, 57
loss function  55, 56
masking  49
model training  49, 52
regularization techniques  54, 55

shift to prompt-based approach  131-134
shot learning  141-143
singular value decomposition (SVD)  108
stable diffusion transformer  30-33
state-of-the-art (SOTA) model  111, 131
Stochastic Differential Equations (SDEs)  22
Stochastic Gradient Descent (SGD)  22
StyleSprint deployment  99, 100

maintenance and reliability  101, 102
testing and monitoring  101

Supervised Fine-Tuning (SFT)  132
supervised learning (SL)  51

T
task-specific fine-tuning  105
tensor processing units (TPUs)  72
Term Frequency-Inverse Document 

Frequency (TF-IDF)  40
testing data

setting up  90-92
tokenization  25, 114
token replacement  122
tokens  25



Index 165

traditional ML methods
versus generative methods   6, 7

train function  66
training loss  116, 117
transfer learning (TL)  42, 122
transformer architecture

components  46
in advanced language models  45, 46

transformer architecture, components
decoder stack  47
encoder stack  46
positional encoding  47
position-wise FFNs  50, 51
self-attention mechanism  48, 49

transformer-based models
evolution  9, 10

transformers
used, for image generation  29, 30

translate function  66
truncation  126

V
vanishing gradient  43
Variational Autoencoders (VAEs)  5, 17
Visual Studio Code (VS Code)  77

W
Wasserstein GANs (WGANs)  20
Word2Vec  40

Z
zero-shot approach  109
zero-shot prompting  109
zero-sum game  5





packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as 
industry leading tools to help you plan your personal development and advance your career. For more 
information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from over 

4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files 
available? You can upgrade to the eBook version at packtpub.com and as a print book customer, you 
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range 
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://packtpub.com
http://packtpub.com
mailto:customercare@packtpub.com 
mailto:customercare@packtpub.com 
http://www.packtpub.com


Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Mastering NLP from Foundations to LLMs

Lior Gazit, Meysam Ghaffari

ISBN: 978-1-80461-918-6

•	 Master the mathematical foundations of machine learning and NLP Implement advanced 
techniques for preprocessing text data and analysis Design ML-NLP systems in Python

•	 Model and classify text using traditional machine learning and deep learning methods

•	 Understand the theory and design of LLMs and their implementation for various applications 
in AI

•	 Explore NLP insights, trends, and expert opinions on its future direction and potential

https://packt.link/1804619183


169Other Books You May Enjoy

OpenAI API Cookbook

Henry Habib

ISBN: 978-1-80512-135-0

•	 Grasp the fundamentals of the OpenAI API

•	 Navigate the API’s capabilities and limitations of the API

•	 Set up the OpenAI API with step-by-step instructions, from obtaining your API key to making 
your first call

•	 Explore advanced features such as system messages, fine-tuning, and the effects of different 
parameters

•	 Integrate the OpenAI API into existing applications and workflows to enhance their functionality 
with AI

•	 Design and build applications that fully harness the power of ChatGPT

https://packt.link/1805121359


170

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com and 
apply today. We have worked with thousands of developers and tech professionals, just like you, to 
help them share their insight with the global tech community. You can make a general application, 
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished Generative AI Foundations in Python, we’d love to hear your thoughts! If you 
purchased the book from Amazon, please click here to go straight to the Amazon 
review page for this book and share your feedback or leave a review on the site that you purchased 
it from.

Your review is important to us and the tech community and will help us make sure we’re delivering 
excellent quality content.

http://authors.packtpub.com
https://www.packtpub.com/
https://www.packtpub.com/


171

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical 
books directly into your application. 

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content 
in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/9781835460825

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781835460825

	Title Page
	Copyright and Credits
	Dedications
	Foreword
	Contributors
	Table of Contents
	Preface
	Part 1: 
Foundations of Generative AI and the Evolution of Large Language Models
	Chapter 1: Understanding Generative AI: An Introduction
	Generative AI
	Distinguishing generative AI from other AI models
	Briefly surveying generative approaches
	Clarifying misconceptions between discriminative and generative paradigms
	Choosing the right paradigm

	Looking back at the evolution of generative AI
	Overview of traditional methods in NLP
	Arrival and evolution of transformer-based models
	Development and impact of GPT-4

	Looking ahead at risks and implications
	Introducing use cases of generative AI
	The future of generative AI applications
	Summary
	References

	Chapter 2: Surveying GenAI Types and Modes: An Overview of GANs, Diffusers, and Transformers
	Understanding General Artificial Intelligence (GAI) Types – distinguishing features of GANs, diffusers, and transformers
	Deconstructing GAI methods – exploring GANs, diffusers, and transformers
	A closer look at GANs
	A closer look at diffusion models
	A closer look at generative transformers

	Applying GAI models – image generation using GANs, diffusers, and transformers
	Working with Jupyter Notebook and Google Colab
	Stable diffusion transformer
	Scoring with the CLIP model

	Summary
	References

	Chapter 3: Tracing the Foundations of Natural Language Processing and the Impact 
of the Transformer
	Early approaches in NLP
	Advent of neural language models
	Distributed representations
	Transfer Learning
	Advent of NNs in NLP

	The emergence of the Transformer in advanced language models
	Components of the transformer architecture
	Sequence-to-sequence learning

	Evolving language models – the AR Transformer and its role in GenAI
	Implementing the original Transformer
	Data loading and preparation
	Tokenization
	Data tensorization
	Dataset creation
	Embeddings layer
	Positional encoding
	Multi-head self-attention
	FFN
	Encoder layer
	Encoder
	Decoder layer
	Decoder
	Complete transformer
	Training function
	Translation function
	Main execution

	Summary
	References

	Chapter 4: Applying Pretrained Generative Models: From Prototype 
to Production
	Prototyping environments
	Transitioning to production
	Mapping features to production setup
	Setting up a production-ready environment
	Local development setup
	Visual Studio Code
	Project initialization
	Docker setup
	Requirements file
	Application code
	Creating a code repository
	CI/CD setup

	Model selection – choosing the right pretrained generative model
	Meeting project objectives
	Model size and computational complexity
	Benchmarking

	Updating the prototyping environment
	GPU configuration
	Loading pretrained models with LangChain
	Setting up testing data

	Quantitative metrics evaluation
	Alignment with CLIP
	Interpreting outcomes

	Responsible AI considerations
	Addressing and mitigating biases
	Transparency and explainability

	Final deployment
	Testing and monitoring
	Maintenance and reliability

	Summary

	Part 2: 
Practical Applications of Generative AI
	Chapter 5: Fine-Tuning Generative Models for Specific Tasks
	Foundation and relevance – an introduction to fine-tuning
	PEFT
	LoRA
	AdaLoRA

	In-context learning
	Fine-tuning versus in-context learning
	Practice project: Fine-tuning for Q&A using PEFT
	Background regarding question-answering fine-tuning
	Implementation in Python
	Evaluation of results

	Summary
	References

	Chapter 6: Understanding Domain Adaptation for Large 
Language Models
	Demystifying domain adaptation – understanding its history and importance
	Practice project: Transfer learning for the finance domain
	Training methodologies for financial domain adaptation
	Evaluation and outcome analysis – the ROUGE metric

	Summary
	References

	Chapter 7: Mastering the Fundamentals of Prompt Engineering
	The shift to prompt-based approaches
	Basic prompting – guiding principles, types, and structures
	Guiding principles for model interaction
	Prompt elements and structure

	Elevating prompts – iteration and influencing model behaviors
	LLMs respond to emotional cues
	Effect of personas
	Situational prompting or role-play

	Advanced prompting in action – few-shot learning and prompt chaining
	Practice project: Implementing RAG with LlamaIndex using Python
	Summary
	References

	Chapter 8: Addressing Ethical Considerations and 
Charting a Path Toward Trustworthy Generative AI
	Ethical norms and values in the context of generative AI
	Investigating and minimizing bias in generative LLMs and generative image models
	Constrained generation and eliciting trustworthy outcomes
	Constrained generation with fine-tuning
	Constrained generation through prompt engineering

	Understanding jailbreaking and harmful behaviors
	Practice project: Minimizing harmful behaviors with filtering
	Summary
	References

	Index
	About Packt
	Other Books You May Enjoy



